The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR varia...The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.展开更多
Extreme air temperature and increased weather oscillations caused by climate change have been threatening global health.Meteorological conditions are external inducers that may trigger the onset of gastrointestinal di...Extreme air temperature and increased weather oscillations caused by climate change have been threatening global health.Meteorological conditions are external inducers that may trigger the onset of gastrointestinal diseases,in addition to bacterial infection or behavioral factors including smoking,alcohol consumption,and hot food consumption[1,2].展开更多
Based on the precipitation data observed by stations and data simulated by 23 CMIP5 models,the features and future changes of summer(Jun-JulAug)extreme precipitation events in Sichuan Province of China were analysed.W...Based on the precipitation data observed by stations and data simulated by 23 CMIP5 models,the features and future changes of summer(Jun-JulAug)extreme precipitation events in Sichuan Province of China were analysed.We found that the total precipitation(RSum),extreme precipitation threshold(Threshold90),extreme precipitation(TR90),extreme precipitation percentage(TR90 pct)and extreme precipitation intensity(TR90 str)decreased from the southeast to the northwest in Sichuan Province,reflecting the differences between eastern Sichuan(ESC,basins)and western Sichuan(WSC,mountains).Compared with the observations,most of the CMIP5 models showed that there were wet biases in WSC and an unclear bias pattern in ESC for the RSum,Threshold90,TR90,and TR90 str.However,the extreme precipitation days(ND90)and TR90 pct values simulated by the models were generally overestimated and underestimated,respectively.Compared with the historical period,most models showed obvious increases in the TR90 and TR90 pct in the 21 century,while the characteristics of Rsum,ND90,and TR90 str were inconspicuous.Compared with the mid-21 st century,the extreme precipitation in the late-21 st century exhibited a certain degree of increase.Even during the same period,the results of RCP8.5 were higher than those of RCP4.5,especially for the ND90,TR90,and TR90 pct.展开更多
The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to Dec...The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to December 2014.The annual mean aerosol optical depth(AOD)was 0.35±0.23,and the?ngstr?m exponent was 1.0±0.38.The AOD exhibited higher values in summer and winter,but lower values in spring and autumn.Dividing the observational periods into dry and wet seasons,the authors found that the concentrations of K^+,elemental carbon,secondary inorganic aerosols,and primary and secondary organic carbon in the dry(wet)season were 0.29(0.21),0.88(0.60),7.4(4.5),7.5(5.1),and 3.9(12)μg m?3,respectively.Combined with trajectory analysis,the authors found that higher concentrations of K^+,elemental carbon,and primary organic carbon indicated the effects of biomass burning from Southeast Asia during the dry season.However,the oxidation of volatile organic compounds was the main source of aerosols during the wet season,which originated from the Sichuan Basin.展开更多
The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t...The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.展开更多
The efficacy of vegetation dynamics simulations in offline land surface models(LSMs)largely depends on the quality and spatial resolution of meteorological forcing data.In this study,the Princeton Global Meteorologica...The efficacy of vegetation dynamics simulations in offline land surface models(LSMs)largely depends on the quality and spatial resolution of meteorological forcing data.In this study,the Princeton Global Meteorological Forcing Data(PMFD)and the high spatial resolution and upscaled China Meteorological Forcing Data(CMFD)were used to drive the Simplified Simple Biosphere model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(SSiB4/TRIFFID)and investigate how meteorological forcing datasets with different spatial resolutions affect simulations over the Tibetan Plateau(TP),a region with complex topography and sparse observations.By comparing the monthly Leaf Area Index(LAI)and Gross Primary Production(GPP)against observations,we found that SSiB4/TRIFFID driven by upscaled CMFD improved the performance in simulating the spatial distributions of LAI and GPP over the TP,reducing RMSEs by 24.3%and 20.5%,respectively.The multi-year averaged GPP decreased from 364.68 gC m^(-2)yr^(-1)to 241.21 gC m^(-2)yr^(-1)with the percentage bias dropping from 50.2%to-1.7%.When using the high spatial resolution CMFD,the RMSEs of the spatial distributions of LAI and GPP simulations were further reduced by 7.5%and 9.5%,respectively.This study highlights the importance of more realistic and high-resolution forcing data in simulating vegetation growth and carbon exchange between the atmosphere and biosphere over the TP.展开更多
The ecosystems on the Tibetan Plateau(TP) are highly vulnerable to climate change, rising CO2 concentration, and land-use and land-cover change(LULCC), but their contributions to changes in the gross primary productiv...The ecosystems on the Tibetan Plateau(TP) are highly vulnerable to climate change, rising CO2 concentration, and land-use and land-cover change(LULCC), but their contributions to changes in the gross primary productivity(GPP) of the TP are not clearly understood. In this study, the role of these three factors on the interannual variations(IAVs) and trends of the TP’s GPP were investigated using 12 terrestrial biosphere models. The ensemble simulations showed that climate change can explain most of the changes in the GPP, while the direct effect of LULCC and rising CO2(mainly fertilization effect) contributed 10% and-14% to the mean GPP values, 37% and -20% to the IAV, and 52% and -24% to the GPP’s trend, respectively. The LULCC showed higher contributions to the significant positive trend in the annual GPP of the TP. However, the results from different model simulations showed that considerable uncertainties were associated with the effects of LULCC on the GPP of the TP.展开更多
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which th...Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.展开更多
Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation...Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation process that occurred on 18-20 August 2010, with clear nocturnal peaks -- is chosen as a case to tentatively explore how the convection associated with convectivescale precipitation is initiated and propagated. By utilizing the vertical momentum equation from the viewpoint of separating perturbation pressure into dynamic and thermal parts, it is demonstrated that the vertical momentum is induced by the imbalance of several forces, including the dynamic/buoyant part of the perturbation pressure gradient force and the buoyancy force, with the latter dominating during the nocturnal-peak period. Although a negative value of the dynamic perturbation pressure gradient force partly offsets the positive buoyant forcing inside the strong updraft, the pattern of vertical motion tendency is largely attributable to its buoyancy because of its larger magnitude. Relative to the buoyancy component, the dynamic part of the vertical perturbation pressure gradient is also examined, revealing a smaller order of magnitude. Thus, it is the thermal effect that should be responsible for the initiation and propagation of convection. As for the convective-scale precipitation, it always presents a trailing morphology relative to the strong leading-side updraft. Furthermore, overlapping strong signals of vertical motion and its tendency point towards strong precipitation in the future.展开更多
The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in ...The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in precipitation in the southeastern edge of the plateau have resulted in cutting-edge research regarding the impact of the TP and its surrounding areas on downstream weather and climate.In this study,the spatial and temporal distribution of surface heat flux and precipitation were analyzed from 1998 to 2022,and the possible mechanism of the decrease of precipitation in the eastern edge of the plateau is explored.The main conclusions are as follows:The annual average sensible heat flux in the TP and its east side is positive,with an average of 33.73 W/m^(2).The annual average latent heat flux is positive,with an average of 42.71 W/m^(2).Precipitation has a similar annual average and seasonal distribution,with modest amounts in the northwest and substantial amounts in the southeast.The average annual accumulated precipitation is 670.69 mm.The first mode of the Empirical Orthogonal Function(EOF)shows that sensible heat flux decreases first,then increases,and then finally decreases during 1998–2022.The modes show the opposite trend in middle part of the plateau.The latent heat flux initially decreases,then increases,and finally decreases in the western plateau and near Sichuan Basin.The mode,however,displays the opposite tendency throughout the rest of the region.The precipitation in the north and south sides of the plateau has decreased since 2013,which is consistent with the changing trend of sensible heat flux.In the rest of the region,the change trend is not obvious.The sensible heat of the main body of the plateau and its east side and Sichuan Basin is negatively correlated with precipitation,that is,when sensible heat flux of the main body of the plateau and its east side and Sichuan Basin is more(less),local precipitation is less(more).The latent heat of the main body of the plateau and its east side,Sichuan Basin is positively correlated with precipitation,indicating that when latent heat flux of the main body of the plateau and its east side,Sichuan Basin is more(less),local precipitation is more(less).展开更多
An underlying wetland surface comprises soil, water and vegetation and is sensitive to local climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how ...An underlying wetland surface comprises soil, water and vegetation and is sensitive to local climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Using data from observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling(Ω factor)between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors(solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows:(1) Due to diurnal variations of solar radiation and wind speed, a trend developed where diurnal variations of the Ω factor were small in the morning and large in the evening. Due to the vegetation growing cycle, seasonal variations of the Ω factor present a reverse "U" trend. These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over latent heat flux. This conforms to the Omega Theory.(2) The values for average absolute atmospheric factor(surface factor or total) control exercised by solar radiation and water vapour pressure are 0.20(0.02 or 0.22) and 0.005(-0.07 or-0.06) W/(m2·Pa), respectively. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on latent heat flux.(3) At the underlying alpine wetland surface, solar radiation primarily influences latent heat flux through its direct effects(atmospheric factor controls). Water vapour pressure deficit primarily influences latent heat flux through its indirect effects(surface factor controls) on changing the surface resistance.(4) The average Ω factor in the underlying alpine wetland surface is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between alpine wetland surface and atmosphere system is low. The actual measurements agree with the Omega Theory. The latent heat flux is mainly influenced by solar radiation.展开更多
Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to underst...Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland.This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and thermal roughness length were found to be greater in the warm season(June–August)than in the cold season(December–February),with a frozen depth of 20–40 cm over the alpine wetland.The transfers of heat fluxes were mainly controlled by longwave radiation and air temperature and affected by root distribution.Air pressure and stomatal conductance were also important to latent heat flux,and soil solid water content was important to sensible heat flux.Soil temperature was dominated by longwave radiation and air temperature,with crucial surface parameters of initial soil liquid water content and total water content.The atmospheric control factors transitioned to precipitation and air temperature for soil moisture,especially at the shallow layer(5 cm).Meanwhile,the more influential surface parameters were root distribution and stomatal conductance in the warm season and initial soil liquid water content and total water content in the cold season.This work contributes to the research on the land surface processes over the alpine wetland and is helpful to wetland protection.展开更多
Based on the daily maximum temperature data of 31 meteorological observation stations and some statistical methods, the temporal and spatial characteristics of summer extreme high temperature in Guizhou province from ...Based on the daily maximum temperature data of 31 meteorological observation stations and some statistical methods, the temporal and spatial characteristics of summer extreme high temperature in Guizhou province from 1970 to 2020 are analyzed. The results indicate that: 1) The threshold of extreme high temperature (EHT) in summer in Guizhou province had a large spatial difference, with decreasing characteristics from the northeast to the southwest, it was negatively correlated with the altitude. 2) In most parts of Guizhou province, the extreme high temperature days (EHTD) in summer can reach about 4.2 d, the lowest EHTD occurred in the southernmost part. From June to August, the EHTD gradually increased, especially in Central and eastern parts of Guizhou province. However, the extreme high temperature intensity (EHTI) displayed similar distribution characteristics in summer, June, July and August, with larger value in the northeast part and lower value in the southwest part of Guizhou. 3) EHTD had a rising trend in almost stations, except for the PZ station, the increased range and intensity gradually increased from June to August. But the EHTI had a larger spatial difference, especially in June, it declined in most parts of Guizhou, the declined scope and intensity gradually decreased in July, and completely increased in August, this made EHTI show an increasing trend in summer in most parts the Guizhou province. 4) The averaged EHTD increased by 0.62 d/10a (p 0.1), the significant increase also occurred in August, but it increased insignificantly in June and July. The averaged EHTI had insignificant increase in summer and the three months. In general, the EHTD and EHTI increased in most parts of Guizhou province during the period of 1970-2020, this may be related to the changes of them in August.展开更多
The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolu...The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolutions.The outputs of the high-and low-resolution versions of CAS FGOALS-f3-H and CAS FGOALS-f3-L for the experiments of the HighResMIP simulations in CMIP6 are described in this paper.The models and their configurations,experimental settings,and postprocessing methods are all introduced.CAS FGOALS-f3-H,with a 0.25°horizontal resolution,and CAS FGOALS-f3-L,with a 1°horizontal resolution,were forced by the standard external conditions,and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of‘highresSST-present’and‘highresSST-future’,respectively.The model outputs contain multiple time scales including the required hourly mean,three-hourly mean,six-hourly transient,daily mean,and monthly mean datasets.It is reported that the 0.25°CAS FGOALS-f3-H successfully simulates some of the key challenges in climate modeling,including the average lifetime of tropical cyclones,particularly in the western parts of the northern Pacific Ocean,and the diurnal cycle of hourly precipitation.These datasets will contribute to the benchmarking of current models for CMIP,and studies of the impacts of horizontal resolutions on climate modeling issues.展开更多
On 20 July 2021,northern Henan Province in China experienced catastrophic flooding as a result of an extremely intense rainstorm,with a record-breaking hourly rainfall of 201.9 mm during 0800–0900 UTC and daily accum...On 20 July 2021,northern Henan Province in China experienced catastrophic flooding as a result of an extremely intense rainstorm,with a record-breaking hourly rainfall of 201.9 mm during 0800–0900 UTC and daily accumulated rainfall in Zhengzhou City exceeding 600 mm(“Zhengzhou 7.20 rainstorm”for short).The multi-scale dynamical and thermodynamical mechanisms for this rainstorm are investigated based on station-observed and ERA-5 reanalysis datasets.The backward trajectory tracking shows that the warm,moist air from the northwestern Pacific was mainly transported toward Henan Province by confluent southeasterlies on the northern side of a strong typhoon In-Fa(2021),with the convergent southerlies associated with a weaker typhoon Cempaka(2021)concurrently transporting moisture northward from South China Sea,supporting the rainstorm.In the upper troposphere,two equatorward-intruding potential vorticity(PV)streamers within the planetary-scale wave train were located over northern Henan Province,forming significant divergent flow aloft to induce stronger ascending motion locally.Moreover,the converged moist air was also blocked by the mountains in western Henan Province and forced to rise so that a deep meso-β-scale convective vortex(MβCV)was induced over the west of Zhengzhou City.The PV budget analyses demonstrate that the MβCV development was attributed to the positive feedback between the rainfall-related diabatic heating and high-PV under the strong upward PV advection during the Zhengzhou 7.20 rainstorm.Importantly,the MβCV was forced by upper-level larger-scale westerlies becoming eastward-sloping,which allowed the mixtures of abundant raindrops and hydrometeors to ascend slantwise and accumulate just over Zhengzhou City,resulting in the record-breaking hourly rainfall locally.展开更多
The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) ...The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) Morphing(CMORPH) technique. The results show that summer precipitation over South Asia and East Asia possesses a remarkable diurnal cycle, with obvious regional differences. Over the coastal areas, plateau, and high mountains, summer precipitation peaks in the late afternoon; while over low altitude areas, such as valleys, basins, and inshore seas, it peaks during midnight to early morning. In addition to these general features consistent with previous studies, the high resolution CMORPH technique can depict finer regional details, such as the less coherent phase pattern over a few regions. Besides, through comparative analysis of the diurnal cycle strength and precipitation fields, the authors find that for humid areas the summer precipitation diurnal cycle is especially significant over Southeast China, the Sichuan Basin, Hainan Province, Taiwan Province, the Philippines, and Indonesia. And it is relatively weak over the south of Northeast China, central East China, Yunnan Province, the central Indian Peninsula, and most oceanic areas. Comparisons between two satellite datasets—those of the CMORPH and Tropical Rainfall Measuring Mission(TRMM) 3B42 products—are also presented. For summer precipitation and the main diurnal cycle features, the results from both products agree over most regions, except a few areas, e.g., the Tibetan Plateau.展开更多
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ...Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.展开更多
It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) te...It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.展开更多
The simulation of soil temperature on the Tibetan Plateau(TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the...The simulation of soil temperature on the Tibetan Plateau(TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5(CLM3.5) and Regional Climatic Model 4(Reg CM4). The improved CLM3.5 and Reg CM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.展开更多
Soil freeze-thaw process is closely related to surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,two numerical experiments(including and excluding soil freeze-thaw process)were desig...Soil freeze-thaw process is closely related to surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,two numerical experiments(including and excluding soil freeze-thaw process)were designed to examine the effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region in the Northern Hemisphere based on the state-of-the-art Community Earth System Model version 1.0.5.Results show that in response to soil freeze-thaw process,the area averaged soil temperature in the shallow layer(0.0175−0.0451 m)decreases by 0.35℃in the TP(Tibetan Plateau),0.69℃in CES(Central and Eastern Siberia),and 0.6℃in NA(North America)during summer,and increases by 1.93℃in the TP,2.28℃in CES and 1.61℃in NA during winter,respectively.Meanwhile,in response to soil freeze-thaw process,the area averaged soil liquid water content increases in summer and decrease in winter.For surface heat flux components,the ground heat flux is most significantly affected by the freeze-thaw process in both summer and winter,followed by sensible heat flux and latent heat flux in summer.In the TP area,the ground heat flux increases by 2.82 W/m2(28.5%)in summer and decreases by 3.63 W/m2(40%)in winter.Meanwhile,in CES,the ground heat flux increases by 1.89 W/m2(11.3%)in summer and decreases by 1.41 W/m2(18.6%)in winter.The heat fluxes in the Tibetan Plateau are more susceptible to the freeze-thaw process compared with the high-latitude frozen soil regions.Soil freeze-thaw process can induce significant warming in the Tibetan Plateau in winter.Also,this process induces significant cooling in high-latitude regions in summer.The frozen ground can prevent soil liquid water from infiltrating to deep soil layers at the beginning of thawing;however,as the frozen ground thaws continuously,the infiltration of the liquid water increases and the deep soil can store water like a sponge,accompanied by decreasing surface runoff.The influence of the soil freeze-thaw process on surface hydrologic and thermal fluxes varies seasonally and spatially.展开更多
基金supported by The Second Tibetan Plateau Scientific Expedition and Research (STEP) program(Grant No. 2019QZKK0102)the National Natural Science Foundation of China (Grant No. 41975135)+1 种基金the Natural Science Foundation of Sichuan,China (Grant No. 2022NSFSC1092)funded by the China Scholarship Council。
文摘The diurnal temperature range(DTR) serves as a vital indicator reflecting both natural climate variability and anthropogenic climate change. This study investigates the historical and projected multitemporal DTR variations over the Tibetan Plateau. It assesses 23 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6) using CN05.1 observational data as validation, evaluating their ability to simulate DTR over the Tibetan Plateau. Then, the evolution of DTR over the Tibetan Plateau under different shared socioeconomic pathway(SSP) scenarios for the near,middle, and long term of future projection are analyzed using 11 selected robustly performing models. Key findings reveal:(1) Among the models examined, BCC-CSM2-MR, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR,FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and INM-CM5-0 exhibit superior integrated simulation capability for capturing the spatiotemporal variability of DTR over the Tibetan Plateau.(2) Projection indicates a slightly increasing trend in DTR on the Tibetan Plateau in the SSP1-2.6 scenario, and decreasing trends in the SSP2-4.5, SSP3-7.0, and SPP5-8.5 scenarios. In certain areas, such as the southeastern edge of the Tibetan Plateau, western hinterland of the Tibetan Plateau, southern Kunlun, and the Qaidam basins, the changes in DTR are relatively large.(3) Notably, the warming rate of maximum temperature under SSP2-4.5, SSP3-7.0, and SPP5-8.5 is slower compared to that of minimum temperature, and it emerges as the primary contributor to the projected decrease in DTR over the Tibetan Plateau in the future.
基金supported by the National Natural Science Foundation of China[42205185]the Natural Science Foundation of Sichuan Province[2024NSFSC0773]+1 种基金the Key Research and Development Plan of Gansu Province[21YF5FA169]China Meteorological Administration“Research on value realization of climate ecological products”Youth Innovation Team Project[CMA2024QN15].
文摘Extreme air temperature and increased weather oscillations caused by climate change have been threatening global health.Meteorological conditions are external inducers that may trigger the onset of gastrointestinal diseases,in addition to bacterial infection or behavioral factors including smoking,alcohol consumption,and hot food consumption[1,2].
基金funded by the National Natural Science Foundation of China(grant no.41975130,41875102)the Sichuan Science and Technology Program(2020JDJQ0050)+2 种基金the Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province(grant no.SZKT201804)the Key Project of Education Office of Sichuan Province(grant no.18ZA0095)the Scientific Research Foundation of Chengdu University of Information Technology(grant no.KYTZ201737)。
文摘Based on the precipitation data observed by stations and data simulated by 23 CMIP5 models,the features and future changes of summer(Jun-JulAug)extreme precipitation events in Sichuan Province of China were analysed.We found that the total precipitation(RSum),extreme precipitation threshold(Threshold90),extreme precipitation(TR90),extreme precipitation percentage(TR90 pct)and extreme precipitation intensity(TR90 str)decreased from the southeast to the northwest in Sichuan Province,reflecting the differences between eastern Sichuan(ESC,basins)and western Sichuan(WSC,mountains).Compared with the observations,most of the CMIP5 models showed that there were wet biases in WSC and an unclear bias pattern in ESC for the RSum,Threshold90,TR90,and TR90 str.However,the extreme precipitation days(ND90)and TR90 pct values simulated by the models were generally overestimated and underestimated,respectively.Compared with the historical period,most models showed obvious increases in the TR90 and TR90 pct in the 21 century,while the characteristics of Rsum,ND90,and TR90 str were inconspicuous.Compared with the mid-21 st century,the extreme precipitation in the late-21 st century exhibited a certain degree of increase.Even during the same period,the results of RCP8.5 were higher than those of RCP4.5,especially for the ND90,TR90,and TR90 pct.
基金supported by the National Basic Research Program of China[grant numbers 2016YFC0202001 and 973Program 2014CB441200]the National Natural Science Foundation of China[grant numbers 41375036 and41305076]
文摘The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to December 2014.The annual mean aerosol optical depth(AOD)was 0.35±0.23,and the?ngstr?m exponent was 1.0±0.38.The AOD exhibited higher values in summer and winter,but lower values in spring and autumn.Dividing the observational periods into dry and wet seasons,the authors found that the concentrations of K^+,elemental carbon,secondary inorganic aerosols,and primary and secondary organic carbon in the dry(wet)season were 0.29(0.21),0.88(0.60),7.4(4.5),7.5(5.1),and 3.9(12)μg m?3,respectively.Combined with trajectory analysis,the authors found that higher concentrations of K^+,elemental carbon,and primary organic carbon indicated the effects of biomass burning from Southeast Asia during the dry season.However,the oxidation of volatile organic compounds was the main source of aerosols during the wet season,which originated from the Sichuan Basin.
基金financially supported by the National Natural Science Foundation of China[grant number 42230610]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0103]+1 种基金the Natural Science Foundation of Sichuan Province[grant number 2022NSFSC0217]the Scientific Research Project of Chengdu University of Information Technology[grant number KYTZ201721].
文摘The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.
基金the National Natural Science Foundation of China(Grant Nos.42130602,42175136)the Collaborative Innovation Center for Climate Change,Jiangsu Province,China.
文摘The efficacy of vegetation dynamics simulations in offline land surface models(LSMs)largely depends on the quality and spatial resolution of meteorological forcing data.In this study,the Princeton Global Meteorological Forcing Data(PMFD)and the high spatial resolution and upscaled China Meteorological Forcing Data(CMFD)were used to drive the Simplified Simple Biosphere model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(SSiB4/TRIFFID)and investigate how meteorological forcing datasets with different spatial resolutions affect simulations over the Tibetan Plateau(TP),a region with complex topography and sparse observations.By comparing the monthly Leaf Area Index(LAI)and Gross Primary Production(GPP)against observations,we found that SSiB4/TRIFFID driven by upscaled CMFD improved the performance in simulating the spatial distributions of LAI and GPP over the TP,reducing RMSEs by 24.3%and 20.5%,respectively.The multi-year averaged GPP decreased from 364.68 gC m^(-2)yr^(-1)to 241.21 gC m^(-2)yr^(-1)with the percentage bias dropping from 50.2%to-1.7%.When using the high spatial resolution CMFD,the RMSEs of the spatial distributions of LAI and GPP simulations were further reduced by 7.5%and 9.5%,respectively.This study highlights the importance of more realistic and high-resolution forcing data in simulating vegetation growth and carbon exchange between the atmosphere and biosphere over the TP.
基金This research was supported by the National Key R&D Program of China[grant number 2018YFC1506602]the Key Research Program of Frontier Sciences,Chinese Academy of Sciences[grant number QYZDY-SSW-DQC012]the National Natural Science Foundation of China[grant numbers 41830967 and 41575096].
文摘The ecosystems on the Tibetan Plateau(TP) are highly vulnerable to climate change, rising CO2 concentration, and land-use and land-cover change(LULCC), but their contributions to changes in the gross primary productivity(GPP) of the TP are not clearly understood. In this study, the role of these three factors on the interannual variations(IAVs) and trends of the TP’s GPP were investigated using 12 terrestrial biosphere models. The ensemble simulations showed that climate change can explain most of the changes in the GPP, while the direct effect of LULCC and rising CO2(mainly fertilization effect) contributed 10% and-14% to the mean GPP values, 37% and -20% to the IAV, and 52% and -24% to the GPP’s trend, respectively. The LULCC showed higher contributions to the significant positive trend in the annual GPP of the TP. However, the results from different model simulations showed that considerable uncertainties were associated with the effects of LULCC on the GPP of the TP.
基金supported by the National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disasters (Grant No. 2018YFC1506006)the National Natural Science Foundation of China (Project Nos. 41875108 and 41475037)
文摘Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.
基金supported by the National Department Public Benefit Research Foundation[grant number GYHY201406003]the Open Research Fund Program of the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province[grant number PAEKL-2015-K3]+2 种基金the National Natural Science Foundation of China[grant numbers 413750544157506441375052]
文摘Heavy precipitation events occur often over the western Sichuan Basin in summer, near the transition zone between the Sichuan Basin and the steep terrain of the Tibetan Plateau. One such event -- a heavy precipitation process that occurred on 18-20 August 2010, with clear nocturnal peaks -- is chosen as a case to tentatively explore how the convection associated with convectivescale precipitation is initiated and propagated. By utilizing the vertical momentum equation from the viewpoint of separating perturbation pressure into dynamic and thermal parts, it is demonstrated that the vertical momentum is induced by the imbalance of several forces, including the dynamic/buoyant part of the perturbation pressure gradient force and the buoyancy force, with the latter dominating during the nocturnal-peak period. Although a negative value of the dynamic perturbation pressure gradient force partly offsets the positive buoyant forcing inside the strong updraft, the pattern of vertical motion tendency is largely attributable to its buoyancy because of its larger magnitude. Relative to the buoyancy component, the dynamic part of the vertical perturbation pressure gradient is also examined, revealing a smaller order of magnitude. Thus, it is the thermal effect that should be responsible for the initiation and propagation of convection. As for the convective-scale precipitation, it always presents a trailing morphology relative to the strong leading-side updraft. Furthermore, overlapping strong signals of vertical motion and its tendency point towards strong precipitation in the future.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0103)the National Natural Science Foundation of China(Grant No.42230610)+2 种基金the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC0217)National key research and development program of China(2017YFC1505702)Scientific Research Project of Chengdu University of Information Technology(KYTZ201721).
文摘The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in precipitation in the southeastern edge of the plateau have resulted in cutting-edge research regarding the impact of the TP and its surrounding areas on downstream weather and climate.In this study,the spatial and temporal distribution of surface heat flux and precipitation were analyzed from 1998 to 2022,and the possible mechanism of the decrease of precipitation in the eastern edge of the plateau is explored.The main conclusions are as follows:The annual average sensible heat flux in the TP and its east side is positive,with an average of 33.73 W/m^(2).The annual average latent heat flux is positive,with an average of 42.71 W/m^(2).Precipitation has a similar annual average and seasonal distribution,with modest amounts in the northwest and substantial amounts in the southeast.The average annual accumulated precipitation is 670.69 mm.The first mode of the Empirical Orthogonal Function(EOF)shows that sensible heat flux decreases first,then increases,and then finally decreases during 1998–2022.The modes show the opposite trend in middle part of the plateau.The latent heat flux initially decreases,then increases,and finally decreases in the western plateau and near Sichuan Basin.The mode,however,displays the opposite tendency throughout the rest of the region.The precipitation in the north and south sides of the plateau has decreased since 2013,which is consistent with the changing trend of sensible heat flux.In the rest of the region,the change trend is not obvious.The sensible heat of the main body of the plateau and its east side and Sichuan Basin is negatively correlated with precipitation,that is,when sensible heat flux of the main body of the plateau and its east side and Sichuan Basin is more(less),local precipitation is less(more).The latent heat of the main body of the plateau and its east side,Sichuan Basin is positively correlated with precipitation,indicating that when latent heat flux of the main body of the plateau and its east side,Sichuan Basin is more(less),local precipitation is more(less).
基金supported by funding from the National Natural Science Foundation of China(Grant Nos.41530529 and 91737103)
文摘An underlying wetland surface comprises soil, water and vegetation and is sensitive to local climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Using data from observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling(Ω factor)between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors(solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows:(1) Due to diurnal variations of solar radiation and wind speed, a trend developed where diurnal variations of the Ω factor were small in the morning and large in the evening. Due to the vegetation growing cycle, seasonal variations of the Ω factor present a reverse "U" trend. These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over latent heat flux. This conforms to the Omega Theory.(2) The values for average absolute atmospheric factor(surface factor or total) control exercised by solar radiation and water vapour pressure are 0.20(0.02 or 0.22) and 0.005(-0.07 or-0.06) W/(m2·Pa), respectively. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on latent heat flux.(3) At the underlying alpine wetland surface, solar radiation primarily influences latent heat flux through its direct effects(atmospheric factor controls). Water vapour pressure deficit primarily influences latent heat flux through its indirect effects(surface factor controls) on changing the surface resistance.(4) The average Ω factor in the underlying alpine wetland surface is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between alpine wetland surface and atmosphere system is low. The actual measurements agree with the Omega Theory. The latent heat flux is mainly influenced by solar radiation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42005075,41975130)Natural Science Foundation of Gansu Province(Grant No.21JR7RA047)+1 种基金Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(Grant No.PAEKL-2022-K03)the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2023,SKLCS-ZZ-2022).
文摘Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland.This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and thermal roughness length were found to be greater in the warm season(June–August)than in the cold season(December–February),with a frozen depth of 20–40 cm over the alpine wetland.The transfers of heat fluxes were mainly controlled by longwave radiation and air temperature and affected by root distribution.Air pressure and stomatal conductance were also important to latent heat flux,and soil solid water content was important to sensible heat flux.Soil temperature was dominated by longwave radiation and air temperature,with crucial surface parameters of initial soil liquid water content and total water content.The atmospheric control factors transitioned to precipitation and air temperature for soil moisture,especially at the shallow layer(5 cm).Meanwhile,the more influential surface parameters were root distribution and stomatal conductance in the warm season and initial soil liquid water content and total water content in the cold season.This work contributes to the research on the land surface processes over the alpine wetland and is helpful to wetland protection.
文摘Based on the daily maximum temperature data of 31 meteorological observation stations and some statistical methods, the temporal and spatial characteristics of summer extreme high temperature in Guizhou province from 1970 to 2020 are analyzed. The results indicate that: 1) The threshold of extreme high temperature (EHT) in summer in Guizhou province had a large spatial difference, with decreasing characteristics from the northeast to the southwest, it was negatively correlated with the altitude. 2) In most parts of Guizhou province, the extreme high temperature days (EHTD) in summer can reach about 4.2 d, the lowest EHTD occurred in the southernmost part. From June to August, the EHTD gradually increased, especially in Central and eastern parts of Guizhou province. However, the extreme high temperature intensity (EHTI) displayed similar distribution characteristics in summer, June, July and August, with larger value in the northeast part and lower value in the southwest part of Guizhou. 3) EHTD had a rising trend in almost stations, except for the PZ station, the increased range and intensity gradually increased from June to August. But the EHTI had a larger spatial difference, especially in June, it declined in most parts of Guizhou, the declined scope and intensity gradually decreased in July, and completely increased in August, this made EHTI show an increasing trend in summer in most parts the Guizhou province. 4) The averaged EHTD increased by 0.62 d/10a (p 0.1), the significant increase also occurred in August, but it increased insignificantly in June and July. The averaged EHTI had insignificant increase in summer and the three months. In general, the EHTD and EHTI increased in most parts of Guizhou province during the period of 1970-2020, this may be related to the changes of them in August.
基金jointly funded by the Strategic Priority Research Program of Chinese Academy of Sciences grant number XDB40030205the National Natural Science Foundation of China grant numbers 91737306,41675100,and U1811464。
文摘The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolutions.The outputs of the high-and low-resolution versions of CAS FGOALS-f3-H and CAS FGOALS-f3-L for the experiments of the HighResMIP simulations in CMIP6 are described in this paper.The models and their configurations,experimental settings,and postprocessing methods are all introduced.CAS FGOALS-f3-H,with a 0.25°horizontal resolution,and CAS FGOALS-f3-L,with a 1°horizontal resolution,were forced by the standard external conditions,and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of‘highresSST-present’and‘highresSST-future’,respectively.The model outputs contain multiple time scales including the required hourly mean,three-hourly mean,six-hourly transient,daily mean,and monthly mean datasets.It is reported that the 0.25°CAS FGOALS-f3-H successfully simulates some of the key challenges in climate modeling,including the average lifetime of tropical cyclones,particularly in the western parts of the northern Pacific Ocean,and the diurnal cycle of hourly precipitation.These datasets will contribute to the benchmarking of current models for CMIP,and studies of the impacts of horizontal resolutions on climate modeling issues.
基金supported by the National Natural Science Foundation of China(Grant Nos.42288101,and 42175076)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(Project PAEKL-2022-K02).
文摘On 20 July 2021,northern Henan Province in China experienced catastrophic flooding as a result of an extremely intense rainstorm,with a record-breaking hourly rainfall of 201.9 mm during 0800–0900 UTC and daily accumulated rainfall in Zhengzhou City exceeding 600 mm(“Zhengzhou 7.20 rainstorm”for short).The multi-scale dynamical and thermodynamical mechanisms for this rainstorm are investigated based on station-observed and ERA-5 reanalysis datasets.The backward trajectory tracking shows that the warm,moist air from the northwestern Pacific was mainly transported toward Henan Province by confluent southeasterlies on the northern side of a strong typhoon In-Fa(2021),with the convergent southerlies associated with a weaker typhoon Cempaka(2021)concurrently transporting moisture northward from South China Sea,supporting the rainstorm.In the upper troposphere,two equatorward-intruding potential vorticity(PV)streamers within the planetary-scale wave train were located over northern Henan Province,forming significant divergent flow aloft to induce stronger ascending motion locally.Moreover,the converged moist air was also blocked by the mountains in western Henan Province and forced to rise so that a deep meso-β-scale convective vortex(MβCV)was induced over the west of Zhengzhou City.The PV budget analyses demonstrate that the MβCV development was attributed to the positive feedback between the rainfall-related diabatic heating and high-PV under the strong upward PV advection during the Zhengzhou 7.20 rainstorm.Importantly,the MβCV was forced by upper-level larger-scale westerlies becoming eastward-sloping,which allowed the mixtures of abundant raindrops and hydrometeors to ascend slantwise and accumulate just over Zhengzhou City,resulting in the record-breaking hourly rainfall locally.
基金supported by the National Basic Research Program of China(Grant No.2013CB430201)the China Meteorological Administration Special Fund for Scientific Research in the Public Interest(Grant No.GYHY201206008)
文摘The characteristics of the summer precipitation diurnal cycle over South Asia and East Asia during 2001–13 are investigated based on the high spatiotemporal resolution estimates of the CPC(Climate Prediction Center) Morphing(CMORPH) technique. The results show that summer precipitation over South Asia and East Asia possesses a remarkable diurnal cycle, with obvious regional differences. Over the coastal areas, plateau, and high mountains, summer precipitation peaks in the late afternoon; while over low altitude areas, such as valleys, basins, and inshore seas, it peaks during midnight to early morning. In addition to these general features consistent with previous studies, the high resolution CMORPH technique can depict finer regional details, such as the less coherent phase pattern over a few regions. Besides, through comparative analysis of the diurnal cycle strength and precipitation fields, the authors find that for humid areas the summer precipitation diurnal cycle is especially significant over Southeast China, the Sichuan Basin, Hainan Province, Taiwan Province, the Philippines, and Indonesia. And it is relatively weak over the south of Northeast China, central East China, Yunnan Province, the central Indian Peninsula, and most oceanic areas. Comparisons between two satellite datasets—those of the CMORPH and Tropical Rainfall Measuring Mission(TRMM) 3B42 products—are also presented. For summer precipitation and the main diurnal cycle features, the results from both products agree over most regions, except a few areas, e.g., the Tibetan Plateau.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41905008, 41975007, and 42075081)the Innovation and Entrepreneurship Training Program for College Students of Chengdu University of Information Technology (CUIT) (202210621003, 202210621039, 202110621015)provided by the Scientific Research Foundation of CUIT (KYTZ202126)
文摘Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.
基金supported by funds from the National Key Research and Development Program Global Change and Mitigation Project [grant number 2017YFA0604004]the National Natural Science Foundation of China [grant numbers41675100,91737306 and U1811464]provided by the SCSIO under the project ‘Scientific investigation of the Eastern Indian Ocean in 2018’,funded by the NSFC(NORC2018-10)
文摘It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.
基金supported by the National Natural Science Foundation of China(91537104,41375077,41775016,41405015,and 41405016)
文摘The simulation of soil temperature on the Tibetan Plateau(TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5(CLM3.5) and Regional Climatic Model 4(Reg CM4). The improved CLM3.5 and Reg CM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.
基金This work was supported by the National Nature Science Foundation of China(42075091,41991281,41975096 and 41675015)This work was also supported by CAREERI STS Funding(Y651671001).We acknowledge computing resources and time on TH-1A in the National Supercomputer Center in Tianjin.The authors thank XinYao Rong for fruitful discussions.
文摘Soil freeze-thaw process is closely related to surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,two numerical experiments(including and excluding soil freeze-thaw process)were designed to examine the effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region in the Northern Hemisphere based on the state-of-the-art Community Earth System Model version 1.0.5.Results show that in response to soil freeze-thaw process,the area averaged soil temperature in the shallow layer(0.0175−0.0451 m)decreases by 0.35℃in the TP(Tibetan Plateau),0.69℃in CES(Central and Eastern Siberia),and 0.6℃in NA(North America)during summer,and increases by 1.93℃in the TP,2.28℃in CES and 1.61℃in NA during winter,respectively.Meanwhile,in response to soil freeze-thaw process,the area averaged soil liquid water content increases in summer and decrease in winter.For surface heat flux components,the ground heat flux is most significantly affected by the freeze-thaw process in both summer and winter,followed by sensible heat flux and latent heat flux in summer.In the TP area,the ground heat flux increases by 2.82 W/m2(28.5%)in summer and decreases by 3.63 W/m2(40%)in winter.Meanwhile,in CES,the ground heat flux increases by 1.89 W/m2(11.3%)in summer and decreases by 1.41 W/m2(18.6%)in winter.The heat fluxes in the Tibetan Plateau are more susceptible to the freeze-thaw process compared with the high-latitude frozen soil regions.Soil freeze-thaw process can induce significant warming in the Tibetan Plateau in winter.Also,this process induces significant cooling in high-latitude regions in summer.The frozen ground can prevent soil liquid water from infiltrating to deep soil layers at the beginning of thawing;however,as the frozen ground thaws continuously,the infiltration of the liquid water increases and the deep soil can store water like a sponge,accompanied by decreasing surface runoff.The influence of the soil freeze-thaw process on surface hydrologic and thermal fluxes varies seasonally and spatially.