One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this pa...One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.展开更多
When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a ...Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.展开更多
The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main ...The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.展开更多
A large,fully steerable radio telescope is susceptible to the wind load,leading to structure deformation andpointing deviation of the telescope.To effectively suppress the influence of dynamic wind load,the wind resis...A large,fully steerable radio telescope is susceptible to the wind load,leading to structure deformation andpointing deviation of the telescope.To effectively suppress the influence of dynamic wind load,the wind resistancecontrol of the telescope is carried out based on wind speed forecasting.This study developed a wind speedforecasting model to efficiently forecast the wind speed at the telescope position.The proposed model successfullyeliminates the random noise of the original wind speed,effectively extracts the wind speed features and solves theautomatic optimization of the hyperparameters of the forecasting network.This model significantly improves theaccuracy and reliability of wind speed forecasting.To verify the forecasting performance of the proposed model,the wind data from the Qitai Radio Telescope site is examined as a case study.The wind speed forecasting model’sMAE,RMSE and MAPE are 0.0361,0.0703 and 3.87%,respectively.The performance of the proposed modelmeets the requirements of wind resistance control and can provide data support for the radio telescope.展开更多
Several theoretical models have been developed so far to predict the thermal conductivities of carbon nanotube(CNT)networks.However,these models overestimated the thermal conductivity significantly.In this paper,we cl...Several theoretical models have been developed so far to predict the thermal conductivities of carbon nanotube(CNT)networks.However,these models overestimated the thermal conductivity significantly.In this paper,we claimed that a CNT network can be considered as a contact thermal resistance network.In the contact thermal resistance network,the temperature of an individual CNT is nonuniform and the intrinsic thermal resistance of CNTs can be ignored.Compared with the previous models,the model we proposed agrees well with the experimental results of single-walled CNT networks.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ...In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.展开更多
Complicated electromagnetic environments of the space situational awareness facilities(i.e.,satellite navigation systems,radar)would significantly impact normal operations.Effective monitoring and the corresponding di...Complicated electromagnetic environments of the space situational awareness facilities(i.e.,satellite navigation systems,radar)would significantly impact normal operations.Effective monitoring and the corresponding diagnosis of the jamming signals are essential to normal opera-tions and the innovations in anti-jamming equipment.This paper demonstrates a comprehensive survey on jamming monitoring algorithms and applications.The methods in dealing with jamming signals are summarized primarily.Subsequently,the jamming detection,identification,and direc-tion finding techniques are addressed separately.Based on the established studies,we also provide some potential trends of the demonstrated jamming monitoring issues.展开更多
In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based o...In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.展开更多
The oxygen adsorption/desorption properties of YBaCo4O7 at high temperature were investigated by thermogravimetry(TG) method,in which two types of oxygen adsorption were combined.The first type adsorbed oxygen at abou...The oxygen adsorption/desorption properties of YBaCo4O7 at high temperature were investigated by thermogravimetry(TG) method,in which two types of oxygen adsorption were combined.The first type adsorbed oxygen at about 700 °C and released the adsorbed oxygen at 880 °C.After the first type oxygen desorption,even the temperature and oxygen flow were kept the same,a second type oxygen adsorption at about 880 °C occurred and the adsorbed oxygen were released at above 980 °C.The combination of these two types of...展开更多
The Li-rich layered oxides show a higher discharge capacity over 250 mAh/g and have been developed into a promising positive material for lithium ion batteries. A rare earth metal oxyfluoride YOF-coated Li[Lio.2Mno.54...The Li-rich layered oxides show a higher discharge capacity over 250 mAh/g and have been developed into a promising positive material for lithium ion batteries. A rare earth metal oxyfluoride YOF-coated Li[Lio.2Mno.54Ni0.13Co0.13]O2 composites have been synthesized by a simple wet chem- ical method. Crystal structure, micro-morphology and element valence of the pristine and YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials are characterized by XRD, SEM, TEM, and XPS. The results indicate that all materials exhibit a typical layered structure, and are made up of small and homogenous parti- cles ranging from 100 nm to 200 nm. In addition, YOF layer with a thickness of approximately 3-8 nm is precisely coated on the surface of the Li[Li0.2Mn0.54Ni0.13Co0.13]02. Constant current charge/discharge tests at various current densities show that the electrochemical performance of 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 has been improved significantly. 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 delivers the highest discharge capacity of 250.4 mAh/g at 20 mA/g among all the samples, and capacity retention of 87% after 100 charge/discharge cycles at 200 mA/g while that of the pristine one is only 81.6%. The superior electrochemical performance of 2wt% YOF-coated sample is ascribed to YOF coating layer, which could not only reduce side reactions between the electrode and liquid electrolyte, but also promote lithium ion migration.展开更多
6H-SiC is an important semiconductor material. The 6H-SiC wafer is always exposed to a high-humidity environment and the effect from the absorbed water molecule and some relative adsorbates is not negligible. Here, th...6H-SiC is an important semiconductor material. The 6H-SiC wafer is always exposed to a high-humidity environment and the effect from the absorbed water molecule and some relative adsorbates is not negligible. Here, the oxygen and water molecules absorbed on the 6H-SiC(0001) surface and the dissociation process were studied with density functional theory. On the 6H-SiC(0001) surface, absorbed O2 is spontaneously dissociated into O*, which is absorbed on a hollow site, and further transforms the 6H-SiC(0001) surface into SiO2. The absorbed H2O is spontaneously broken into OH*and H*, which are both absorbed on the top of the Si atom, and OH* is further reversibly transformed into O* and H*. The H* could saturate the dangling Si bond and change the absorption type of O*, which could stabilize the 6H-SiC(0001) surface and prevent it from transforming into SiO2.展开更多
Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,t...Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,this paper proposes a stealth assistant decision system.Firstly,the submarine stealth posture is acquired.A fuzzy neural network inference engine based on improved simplified particle swarm optimization is designed.The auxiliary decision-making scheme for state control and maneuver avoidance of submarine and its equipment is automatically generated.Secondly,the simulation and deduction of the assistant decision-making scheme are realized by the calculation modules of sound source level,propagation loss,and stealth situation.The assistant decision-making scheme and simulation result provide decision support for the commander.Thirdly,the simulation experiment platform of the submarine stealth assistant decision system is constructed.The submarine stealth assistant decision system described in this paper can quickly and efficiently produce assistant decision-making schemes,including submarine and equipment control and maneuver avoidance.The scheme is in line with the combat experience and the results of the pre-model simulation experiments,whereas the simulation deduction evaluates the rationality and effectiveness of the selected scheme.The submarine stealth assistant decision system can adapt to a complex battlefield environment in addition to rapidly and accurately providing assistance in decision-making.展开更多
In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction...In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction of TiH_(2)powders could significantly increase the explosion temperature and fireball duration of emulsion explosive.When emulsion explosives were ignited,the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH_(2)powders increased at first and then decreased.When the content of TiH_(2)powders was 6 mass%,the explosion average temperature reached its maximum value of 3095 K,increasing by 43.7%as compared with that of pure emulsion explosive.In addition,the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters,explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH_(2)powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique.In conclusion,the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.展开更多
The permittivity of lunar regolith is crucial for further processing and interpretation of radar data.The conventional hyperbolic fitting method ignores the antenna height and spacing and has a significant error at a ...The permittivity of lunar regolith is crucial for further processing and interpretation of radar data.The conventional hyperbolic fitting method ignores the antenna height and spacing and has a significant error at a shallow depth.For the new method that considers the layout of the antenna,the influencing factors have not been studied.In this paper,we studied the influence of the position of the hyperbola peak and time zero on the new method for permittivity derivation.The simulation results show that when the input errors of time zero,abscissa and ordinate of the hyperbolic peak are±2 ns,±0.02 m and±0.2 ns respectively,the average errors of the calculated results by points within 1 m from the hyperbolic peak are 10.0%,16.7%and 38.2%,respectively.To improve the accuracy,we used the average results by points that are horizontally more than 1 m away from the hyperbola peak.Hence,we calculated the permittivity of the lunar regolith by the new method based on Lunar Penetrating Radar data.The average permittivity of the lunar regolith is estimated to be 3.3±1.2.展开更多
The influence of thermal deformation on the performance of reflector antennas has become increasingly significant with the increasing aperture and working frequency.The use of a thermal compensation database is an eff...The influence of thermal deformation on the performance of reflector antennas has become increasingly significant with the increasing aperture and working frequency.The use of a thermal compensation database is an efficient method to compensate for the deformation caused by the non-uniform temperature distribution.However,how to efficiently and accurately match and call the database remains as one of the tough challenges for the antenna thermal compensation system to achieve real time compensation.Therefore,this study proposes a data match and call method for the thermal compensation database of the reflector antenna,matching the database from three aspects:the overall rms match of temperature data,the similarity area match of each data sample,and the key area match of key structural positions.The validation of this method is demonstrated in an example.The difference between the pointing adjustment amount calculated by the matched data and the collected data was found to be less than 1",which satisfied the requirements of practical engineering,thus achieving real-time thermal compensation of the antenna.展开更多
In this paper, Ta/[NiFe(15 nm)/FeMn(10 nm)]/Ta exchange-biased bilayers are fabricated by magnetron sputtering, and their static and dynamic magnetic properties before and after rapid annealing treatment with puls...In this paper, Ta/[NiFe(15 nm)/FeMn(10 nm)]/Ta exchange-biased bilayers are fabricated by magnetron sputtering, and their static and dynamic magnetic properties before and after rapid annealing treatment with pulsed current are charac- terized by using a vibrating sample magnetometer (VSM) and a vector network analyzer (VNA), respectively. The exchange bias field He and static anisotropy field Hksta decrease from 118.45 Oe (10e = 79.5775 A.m-1) and 126.84 Oe at 0 V to 94.75 Oe and 102.31 Oe at 90 V, respectively, with increasing capacitor voltage, which supplies pulsed current to heat the sample. The effect of flash thermal annealing by pulsed current on the rotational anisotropy (Hrot), the difference value between static and dynamic magnetic anisotropy, is investigated particularly. The highest Hrot is obtained in the sample annealing with 45-V capacitor (3300 μF) voltage. According to the anisotropic magnetoresistance measurements, it can be explained by the fact that the temperature of the sample is around the blocking temperature of the exchange bias system (Tb) at 45 V, the critical temperature where the formation of more unstable antiferromagnetic grains occurs.展开更多
A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the a...A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61601346 and 62377039)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ6044)+2 种基金the Ministry of Industry and Information Technology of the People's Republic of China(Grant No.2023-276-1-1)the Fundamental Research Funds for the Central Universities,Northwestern Polytechnical University(Grant No.31020180QD089)the Aeronautical Science Foundation of China(Grant Nos.20200043053004 and 20200043053005)。
文摘One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.
基金supported in part by the Joint Project of National Natural Science Foundation of China(U22B2004,62371106)in part by China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.
文摘The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.
基金the National Key Research and Development Program of China(grant No.2021YFC2203600)National Natural Science Foundation of China(NSFC,grant No.52275268)+3 种基金National Defense Basic Scientific Research Program of China(grant No.JCKY2021210B007)Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation(grant No.XWYCXY-012021012)Youth Innovation Team of Shaanxi Universities(grant No.201926)Fundamental Research Funds for the Central Universities(grant No.XJSJ23122).
文摘A large,fully steerable radio telescope is susceptible to the wind load,leading to structure deformation andpointing deviation of the telescope.To effectively suppress the influence of dynamic wind load,the wind resistancecontrol of the telescope is carried out based on wind speed forecasting.This study developed a wind speedforecasting model to efficiently forecast the wind speed at the telescope position.The proposed model successfullyeliminates the random noise of the original wind speed,effectively extracts the wind speed features and solves theautomatic optimization of the hyperparameters of the forecasting network.This model significantly improves theaccuracy and reliability of wind speed forecasting.To verify the forecasting performance of the proposed model,the wind data from the Qitai Radio Telescope site is examined as a case study.The wind speed forecasting model’sMAE,RMSE and MAPE are 0.0361,0.0703 and 3.87%,respectively.The performance of the proposed modelmeets the requirements of wind resistance control and can provide data support for the radio telescope.
基金Project support by the National Natural Science Foundation of China(Grant No.52127811)Department of Science and Technology of Jiangsu Province,China(Grant No.BK20220032)。
文摘Several theoretical models have been developed so far to predict the thermal conductivities of carbon nanotube(CNT)networks.However,these models overestimated the thermal conductivity significantly.In this paper,we claimed that a CNT network can be considered as a contact thermal resistance network.In the contact thermal resistance network,the temperature of an individual CNT is nonuniform and the intrinsic thermal resistance of CNTs can be ignored.Compared with the previous models,the model we proposed agrees well with the experimental results of single-walled CNT networks.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金the National Key R&D Program of China(2022YFF0604502).
文摘In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.
基金supported by the National Key Research and De-velopment Program of China(2020YFB0505601)。
文摘Complicated electromagnetic environments of the space situational awareness facilities(i.e.,satellite navigation systems,radar)would significantly impact normal operations.Effective monitoring and the corresponding diagnosis of the jamming signals are essential to normal opera-tions and the innovations in anti-jamming equipment.This paper demonstrates a comprehensive survey on jamming monitoring algorithms and applications.The methods in dealing with jamming signals are summarized primarily.Subsequently,the jamming detection,identification,and direc-tion finding techniques are addressed separately.Based on the established studies,we also provide some potential trends of the demonstrated jamming monitoring issues.
文摘In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.
基金supported by Science and Technology Foundation of Henan Province,China (092102210263)Natural Science Foundation of Department of Education of Henan Province,China (2009B430003)
文摘The oxygen adsorption/desorption properties of YBaCo4O7 at high temperature were investigated by thermogravimetry(TG) method,in which two types of oxygen adsorption were combined.The first type adsorbed oxygen at about 700 °C and released the adsorbed oxygen at 880 °C.After the first type oxygen desorption,even the temperature and oxygen flow were kept the same,a second type oxygen adsorption at about 880 °C occurred and the adsorbed oxygen were released at above 980 °C.The combination of these two types of...
基金financially supported by the National Basic Research Program of China(Grant no.2015CB251100)
文摘The Li-rich layered oxides show a higher discharge capacity over 250 mAh/g and have been developed into a promising positive material for lithium ion batteries. A rare earth metal oxyfluoride YOF-coated Li[Lio.2Mno.54Ni0.13Co0.13]O2 composites have been synthesized by a simple wet chem- ical method. Crystal structure, micro-morphology and element valence of the pristine and YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials are characterized by XRD, SEM, TEM, and XPS. The results indicate that all materials exhibit a typical layered structure, and are made up of small and homogenous parti- cles ranging from 100 nm to 200 nm. In addition, YOF layer with a thickness of approximately 3-8 nm is precisely coated on the surface of the Li[Li0.2Mn0.54Ni0.13Co0.13]02. Constant current charge/discharge tests at various current densities show that the electrochemical performance of 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 has been improved significantly. 2 wt% YOF-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 delivers the highest discharge capacity of 250.4 mAh/g at 20 mA/g among all the samples, and capacity retention of 87% after 100 charge/discharge cycles at 200 mA/g while that of the pristine one is only 81.6%. The superior electrochemical performance of 2wt% YOF-coated sample is ascribed to YOF coating layer, which could not only reduce side reactions between the electrode and liquid electrolyte, but also promote lithium ion migration.
基金supported by the Fundamental Research Project of Qinghai Province (2017-ZJ-795)
文摘6H-SiC is an important semiconductor material. The 6H-SiC wafer is always exposed to a high-humidity environment and the effect from the absorbed water molecule and some relative adsorbates is not negligible. Here, the oxygen and water molecules absorbed on the 6H-SiC(0001) surface and the dissociation process were studied with density functional theory. On the 6H-SiC(0001) surface, absorbed O2 is spontaneously dissociated into O*, which is absorbed on a hollow site, and further transforms the 6H-SiC(0001) surface into SiO2. The absorbed H2O is spontaneously broken into OH*and H*, which are both absorbed on the top of the Si atom, and OH* is further reversibly transformed into O* and H*. The H* could saturate the dangling Si bond and change the absorption type of O*, which could stabilize the 6H-SiC(0001) surface and prevent it from transforming into SiO2.
基金Funding National Natural Science Foundation of China(51709061,51779057).
文摘Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,this paper proposes a stealth assistant decision system.Firstly,the submarine stealth posture is acquired.A fuzzy neural network inference engine based on improved simplified particle swarm optimization is designed.The auxiliary decision-making scheme for state control and maneuver avoidance of submarine and its equipment is automatically generated.Secondly,the simulation and deduction of the assistant decision-making scheme are realized by the calculation modules of sound source level,propagation loss,and stealth situation.The assistant decision-making scheme and simulation result provide decision support for the commander.Thirdly,the simulation experiment platform of the submarine stealth assistant decision system is constructed.The submarine stealth assistant decision system described in this paper can quickly and efficiently produce assistant decision-making schemes,including submarine and equipment control and maneuver avoidance.The scheme is in line with the combat experience and the results of the pre-model simulation experiments,whereas the simulation deduction evaluates the rationality and effectiveness of the selected scheme.The submarine stealth assistant decision system can adapt to a complex battlefield environment in addition to rapidly and accurately providing assistance in decision-making.
基金supported by the National Natural Science Foundation of China(No.11972046)Outstanding Youth Project of Natural Science Foundation of Anhui Province(No.2108085Y02)+1 种基金Major Project of Anhui University Natural Science Foundation(No.KJ2020ZD30)Anhui University of Science and Technology Postgraduate Innovation Fund(No.2020CX2066)。
文摘In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction of TiH_(2)powders could significantly increase the explosion temperature and fireball duration of emulsion explosive.When emulsion explosives were ignited,the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH_(2)powders increased at first and then decreased.When the content of TiH_(2)powders was 6 mass%,the explosion average temperature reached its maximum value of 3095 K,increasing by 43.7%as compared with that of pure emulsion explosive.In addition,the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters,explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH_(2)powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique.In conclusion,the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.
基金funded by the National Natural Science Foundation of China(NSFC,Grant No.12073048)supported by the Key Research Program,Chinese Academy of Sciences,Grant No.ZDBS-SSW-JS007。
文摘The permittivity of lunar regolith is crucial for further processing and interpretation of radar data.The conventional hyperbolic fitting method ignores the antenna height and spacing and has a significant error at a shallow depth.For the new method that considers the layout of the antenna,the influencing factors have not been studied.In this paper,we studied the influence of the position of the hyperbola peak and time zero on the new method for permittivity derivation.The simulation results show that when the input errors of time zero,abscissa and ordinate of the hyperbolic peak are±2 ns,±0.02 m and±0.2 ns respectively,the average errors of the calculated results by points within 1 m from the hyperbolic peak are 10.0%,16.7%and 38.2%,respectively.To improve the accuracy,we used the average results by points that are horizontally more than 1 m away from the hyperbola peak.Hence,we calculated the permittivity of the lunar regolith by the new method based on Lunar Penetrating Radar data.The average permittivity of the lunar regolith is estimated to be 3.3±1.2.
基金supported by the National Key Research and Development Program of China(2021YFC2203600)National Natural Science Foundation of China(Grant Nos.51975447 and 52005377)Youth Innovation Team of Shaanxi Universities under No.201926。
文摘The influence of thermal deformation on the performance of reflector antennas has become increasingly significant with the increasing aperture and working frequency.The use of a thermal compensation database is an efficient method to compensate for the deformation caused by the non-uniform temperature distribution.However,how to efficiently and accurately match and call the database remains as one of the tough challenges for the antenna thermal compensation system to achieve real time compensation.Therefore,this study proposes a data match and call method for the thermal compensation database of the reflector antenna,matching the database from three aspects:the overall rms match of temperature data,the similarity area match of each data sample,and the key area match of key structural positions.The validation of this method is demonstrated in an example.The difference between the pointing adjustment amount calculated by the matched data and the collected data was found to be less than 1",which satisfied the requirements of practical engineering,thus achieving real-time thermal compensation of the antenna.
基金Project supported by the Young Science and Technology Innovation Team of Sichuan Province,China(Grant No.2017TD0020)
文摘In this paper, Ta/[NiFe(15 nm)/FeMn(10 nm)]/Ta exchange-biased bilayers are fabricated by magnetron sputtering, and their static and dynamic magnetic properties before and after rapid annealing treatment with pulsed current are charac- terized by using a vibrating sample magnetometer (VSM) and a vector network analyzer (VNA), respectively. The exchange bias field He and static anisotropy field Hksta decrease from 118.45 Oe (10e = 79.5775 A.m-1) and 126.84 Oe at 0 V to 94.75 Oe and 102.31 Oe at 90 V, respectively, with increasing capacitor voltage, which supplies pulsed current to heat the sample. The effect of flash thermal annealing by pulsed current on the rotational anisotropy (Hrot), the difference value between static and dynamic magnetic anisotropy, is investigated particularly. The highest Hrot is obtained in the sample annealing with 45-V capacitor (3300 μF) voltage. According to the anisotropic magnetoresistance measurements, it can be explained by the fact that the temperature of the sample is around the blocking temperature of the exchange bias system (Tb) at 45 V, the critical temperature where the formation of more unstable antiferromagnetic grains occurs.
基金supported by the National Natural Science Foundation of China(Nos.61174180,U1433125)the Jiangsu Province Science Foundation (No.BK20141413)the Chinese Postdoctoral Science Foundation (No.2014M550291)
文摘A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.