期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Framework for COVID-19 Segmentation and Classification Based on Deep Learning of Computed Tomography Lung Images
1
作者 Wessam M.Salama Moustafa H.Aly 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期246-256,共11页
Corona Virus Disease 2019(COVID-19) has affected millions of people worldwide and caused more than6.3 million deaths(World Health Organization, June 2022). Increased attempts have been made to develop deep learning me... Corona Virus Disease 2019(COVID-19) has affected millions of people worldwide and caused more than6.3 million deaths(World Health Organization, June 2022). Increased attempts have been made to develop deep learning methods to diagnose COVID-19 based on computed tomography(CT) lung images. It is a challenge to reproduce and obtain the CT lung data, because it is not publicly available. This paper introduces a new generalized framework to segment and classify CT images and determine whether a patient is tested positive or negative for COVID-19 based on lung CT images. In this work, many different strategies are explored for the classification task.ResNet50 and VGG16 models are applied to classify CT lung images into COVID-19 positive or negative. Also,VGG16 and ReNet50 combined with U-Net, which is one of the most used architectures in deep learning for image segmentation, are employed to segment CT lung images before the classifying process to increase system performance. Moreover, the image size dependent normalization technique(ISDNT) and Wiener filter are utilized as the preprocessing techniques to enhance images and noise suppression. Additionally, transfer learning and data augmentation techniques are performed to solve the problem of COVID-19 CT lung images deficiency, therefore the over-fitting of deep models can be avoided. The proposed frameworks, which comprised of end-to-end, VGG16,ResNet50, and U-Net with VGG16 or ResNet50, are applied on the dataset that is sourced from COVID-19 lung CT images in Kaggle. The classification results show that using the preprocessed CT lung images as the input for U-Net hybrid with ResNet50 achieves the best performance. The proposed classification model achieves the 98.98%accuracy(ACC), 98.87% area under the ROC curve(AUC), 98.89% sensitivity(Se), 97.99 % precision(Pr), 97.88%F-score, and 1.8974-seconds computational time. 展开更多
关键词 Augmentation CLASSIFICATION computed tomography(CT) Corona Virus Disease 2019(COVID-19) deep learning ResNet50 SEGMENTATION U-Net VGG16
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部