Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developmen...Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.展开更多
In this paper, a new paradigm named parallel distance is presented to measure the data information in parallel driving system. As an example, the core variables in the parallel driving system are measured and evaluate...In this paper, a new paradigm named parallel distance is presented to measure the data information in parallel driving system. As an example, the core variables in the parallel driving system are measured and evaluated in the parallel distance framework. First, the parallel driving 3.0 system included control and management platform, intelligent vehicle platform and remote-control platform is introduced. Then,Markov chain(MC) is utilized to model the transition probability matrix of control commands in these systems. Furthermore, to distinguish the control variables in artificial and physical driving conditions, different distance calculation methods are enumerated to specify the differences between the virtual and real signals. By doing this, the real system can be guided and the virtual system can be im-proved. Finally, simulation results exhibit the merits and multiple applications of the proposed parallel distance framework.展开更多
基金supported by the National Natural Science Foundation of China(61403158,61520106008)the Project of the Education Department of Jilin Province(2016-429)
文摘Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.
基金supported in part by the National Natural Science Foundation of China(61533019,91720000)Beijing Municipal Science and Technology Commission(Z181100008918007)the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles(ICRI-IACV)。
文摘In this paper, a new paradigm named parallel distance is presented to measure the data information in parallel driving system. As an example, the core variables in the parallel driving system are measured and evaluated in the parallel distance framework. First, the parallel driving 3.0 system included control and management platform, intelligent vehicle platform and remote-control platform is introduced. Then,Markov chain(MC) is utilized to model the transition probability matrix of control commands in these systems. Furthermore, to distinguish the control variables in artificial and physical driving conditions, different distance calculation methods are enumerated to specify the differences between the virtual and real signals. By doing this, the real system can be guided and the virtual system can be im-proved. Finally, simulation results exhibit the merits and multiple applications of the proposed parallel distance framework.