Dear Editor,Scene understanding is an essential task in computer vision.The ultimate objective of scene understanding is to instruct computers to understand and reason about the scenes as humans do.Parallel vision is ...Dear Editor,Scene understanding is an essential task in computer vision.The ultimate objective of scene understanding is to instruct computers to understand and reason about the scenes as humans do.Parallel vision is a research framework that unifies the explanation and perception of dynamic and complex scenes.展开更多
The rapid development of new-generation information technology has triggered the evolution of education and teaching towards digitalization,accelerating the digital transformation of higher education and bringing an i...The rapid development of new-generation information technology has triggered the evolution of education and teaching towards digitalization,accelerating the digital transformation of higher education and bringing an important opportunity for the high-quality development of higher education.Firstly,we give an overview of the digital development of higher education and discuss how information technology is reshaping the teaching and learning of higher education.Secondly,we explain the consensus on the digital development of higher education,and focus on summarizing the digital achievements of higher education in China and analyzing the successful experience through the introduction of the digital development trend of higher education in the world.Finally,we point out the current problems and challenges and make a preliminary discussion.Digital empowerment has arrived,and in the era of digitization,the transformation and development of higher education will lead to systemic changes in universities.This is an inevitable stage in the process of higher education development.Digital transformation will drive higher education to be more competitive,inclusive,and accessible,enabling universities to unleash their digital vitality in various service functions and contribute to the construction of a digital China.展开更多
Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore...Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.展开更多
Dear Editor,This letter presents a multi-automated guided vehicles(AGV) routing planning method based on deep reinforcement learning(DRL)and recurrent neural network(RNN), specifically utilizing proximal policy optimi...Dear Editor,This letter presents a multi-automated guided vehicles(AGV) routing planning method based on deep reinforcement learning(DRL)and recurrent neural network(RNN), specifically utilizing proximal policy optimization(PPO) and long short-term memory(LSTM).展开更多
At the beginning of 2020,the“COVID-19”came out.Affected by the outbreaks,the universities have to carry out online teaching.Online learning provides students with full freedom and personalized learning space,but at ...At the beginning of 2020,the“COVID-19”came out.Affected by the outbreaks,the universities have to carry out online teaching.Online learning provides students with full freedom and personalized learning space,but at the same time,it also brings problems such as weak feelings between teachers and students and lack of learning experience.To solve these problems,this paper adopts the methods of questionnaire survey,experimental control and behavioral modeling.This paper studies how teachers’emotional support behavior affects students’learning process and learning emotion in online learning environment,and proposes that teachers’emotional support behavior is appealed and desired by students.Positive teachers’emotional support behavior can promote students’learning process and improve students’learning emotion.展开更多
With the continuous improvement of automation,industrial robots have become an indispensable part of automated production lines.They widely used in a number of industrial production activities,such as spraying,welding...With the continuous improvement of automation,industrial robots have become an indispensable part of automated production lines.They widely used in a number of industrial production activities,such as spraying,welding,handling,etc.,and have a great role in these sectors.Recently,the robotic technology is developing towards high precision,high intelligence.Robot calibration technology has a great significance to improve the accuracy of robot.However,it has much work to be done in the identification of robot parameters.The parameter identification work of existing serial and parallel robots is introduced.On the one hand,it summarizes the methods for parameter calibration and discusses their advantages and disadvantages.On the other hand,the application of parameter identification is introduced.This overview has a great reference value for robot manufacturers to choose proper identification method,points further research areas for researchers.Finally,this paper analyzes the existing problems in robot calibration,which may be worth researching in the future.展开更多
Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal o...Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.展开更多
Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(C...Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users' normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives,thereby promoting further research into this emerging and important field.展开更多
Digital Logic is a fundamental course of majors in electronic information.The simulation experiment is an essential measure to help students understand the principles of digital logic.It can improve the efficiency of ...Digital Logic is a fundamental course of majors in electronic information.The simulation experiment is an essential measure to help students understand the principles of digital logic.It can improve the efficiency of physical experiments and decrease instrument damage caused by operating errors.CircuitVerse is an open-source and Web-based tool of circuit design and simulation for teaching purposes.And now,teachers and students in many colleges and universities use it to assist teaching and learning.Firstly,through a particular example,the features of CircuitVerse and its usage are explained.Secondly,we briefly introduce the application of CircuitVerse in our teaching as well as the following development plans.We believe that our introduction can help teachers understand the software and how to make full use of this tool.展开更多
As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly important.Thanks to the coupling of neighboring cluster tool...As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly important.Thanks to the coupling of neighboring cluster tools and coordination of multiple robots in a multi-cluster tool,wafer production scheduling becomes rather complicated.After a wafer is processed,due to high-temperature chemical reactions in a chamber,the robot should be controlled to take it out of the processing chamber at the right time.In order to ensure the uniformity of integrated circuits on wafers,it is highly desirable to make the differences in wafer post-processing time among the individual tools in a multicluster tool as small as possible.To achieve this goal,for the first time,this work aims to find an optimal schedule for a dual-arm multi-cluster tool to regulate the wafer post-processing time.To do so,we propose polynomial-time algorithms to find an optimal schedule,which can achieve the highest throughput,and minimize the total post-processing time of the processing steps.We propose a linear program model and another algorithm to balance the differences in the post-processing time between any pair of adjacent cluster tools.Two industrial examples are given to illustrate the application and effectiveness of the proposed method.展开更多
Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial ...Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.展开更多
With the rapid rise of new media platforms such as Weibo and Tiktok,communities with science communication characteristics have progressively grown on social networks.These communities pursue essential objectives such...With the rapid rise of new media platforms such as Weibo and Tiktok,communities with science communication characteristics have progressively grown on social networks.These communities pursue essential objectives such as increased visibility and influence.For the success of the public understanding of science in China,case studies of science communication communities on social media are becoming increasingly valuable as a point of reference.The authenticity of user influence plays an important role in the analysis of the final outcome during the process of community detection.By integrating counterfactual reasoning theory into a community detection algorithm,we present a novel paradigm for eliminating influence bias in online communities.We consider the community of Public Science Day of the Chinese Academy of Sciences as a case study to demonstrate the validity of the proposed paradigm.In addition,we examine data on science communication activities,analyze the key elements of activity communication,and provide references for not only augmenting the communication impact of similar types of popular science activities but also advancing science communication in China.Our main finding is that the propagation channel for the science communication experiment exhibits multi-point scattered propagation and lacks a continuous chain in the process of propagation.展开更多
A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and...A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability.展开更多
Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a ...Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states.Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a closedown period that evolves from the steady state period. Finally,industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.展开更多
Dear editor,This letter presents a novel symmetry and nonnegativity-constrained matrix factorization(SNCMF)-based community detection model on undirected networks such as a social network.Community is a fundamental ch...Dear editor,This letter presents a novel symmetry and nonnegativity-constrained matrix factorization(SNCMF)-based community detection model on undirected networks such as a social network.Community is a fundamental characteristic of a network,making community detection a vital yet thorny issue in network representation.Owing to its high interpretability and scalability。展开更多
To resolve the problem of quantitative analysis in hybrid cloud,a quantitative analysis method,which is based on the security entropy,is proposed.Firstly,according to the information theory,the security entropy is put...To resolve the problem of quantitative analysis in hybrid cloud,a quantitative analysis method,which is based on the security entropy,is proposed.Firstly,according to the information theory,the security entropy is put forward to calculate the uncertainty of the system' s determinations on the irregular access behaviors.Secondly,based on the security entropy,security theorems of hybrid cloud are defined.Finally,typical access control models are analyzed by the method,the method's practicability is validated,and security and applicability of these models are compared.Simulation results prove that the proposed method is suitable for the security quantitative analysis of the access control model and evaluation to access control capability in hybrid cloud.展开更多
In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely...In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely substituted Franklin-Fourier moments and weighted Franklin-Fourier moments(SFFMs and WFFMs),which are orthogonal in polar coordinates.The radial kernel functions of SFFMs and WFFMs are transformed Franklin functions and Franklin functions are composed of a class of complete orthogonal splines function system of degree one.Therefore,it provides the possibility of avoiding calculating high order polynomials,and thus the accurate values of SFFMs and WFFMs can be obtained directly with little computational cost.Theoretical and experimental results show that Franklin functions are not well suited for constructing higher-order moments of SFFMs and WFFMs,but compared with traditional orthogonal moments(e.g.,BFMs,OFMs and ZMs)in polar coordinates,the proposed two types of Franklin-Fourier Moments have better performance respectively in lower-order moments.展开更多
Difference expansion(DE) is one of the famous schemes in the field of reversible data hiding.With the high efficiency and simplicity,DE also has received more attention over the years.DE has a good information capac...Difference expansion(DE) is one of the famous schemes in the field of reversible data hiding.With the high efficiency and simplicity,DE also has received more attention over the years.DE has a good information capacity,but due to its major location map,the pure payload is rather low.Therefore many scholars did relevant improvements which let n pixels as a unit instead of the original two pixels as a unit and can adaptively adjust the number of embedding secret information according to the smoothness degree of the block,which achieves the result of improving the information payload or the image quality.In this paper,the study of DE-based reversible data hiding schemes is comprehensively discussed.The performance of DEbased schemes is evaluated and compared in terms of embedding capacity and stego-image quality.展开更多
A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of ...A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of knowledge triples,it is difficult to directly display to researchers.Semantic Link Network is an attempt,and it can deal with the construction,representation and reasoning of semantics naturally.Based on the Semantic Link Network,this paper explores the representation and construction of knowledge graph,and develops an academic knowledge graph prototype system to realize the representation,construction and visualization of knowledge graph.展开更多
基金supported by the Natural Science Foundation for Young Scientists in Shaanxi Province of China (2023-JC-QN-0729)the Fundamental Research Funds for the Central Universities (GK202207008)。
文摘Dear Editor,Scene understanding is an essential task in computer vision.The ultimate objective of scene understanding is to instruct computers to understand and reason about the scenes as humans do.Parallel vision is a research framework that unifies the explanation and perception of dynamic and complex scenes.
基金supported by the Project of the Higher Education Department of the Ministry of Education“Research on the Guidelines,Standards and Specifications for the Construction of Online Open Courses,and Innovation in Teaching and Service Models”(2021)“Exploration and Application of Teaching Mode Based on MOOC in Higher Education”(2020)+1 种基金2020 Shandong Province Undergraduate Teaching Reform Major Sub-project“Research on the Construction of Emerging Engineering Education”(No.T2020011)Harbin Institute of Technology 2022 Graduate Education and Teaching Reform Research Project“Internet of Things Teaching Research and Practice Guided by the Ability to Solve Complex Computing System Problems”(No.IDOA10002164)。
文摘The rapid development of new-generation information technology has triggered the evolution of education and teaching towards digitalization,accelerating the digital transformation of higher education and bringing an important opportunity for the high-quality development of higher education.Firstly,we give an overview of the digital development of higher education and discuss how information technology is reshaping the teaching and learning of higher education.Secondly,we explain the consensus on the digital development of higher education,and focus on summarizing the digital achievements of higher education in China and analyzing the successful experience through the introduction of the digital development trend of higher education in the world.Finally,we point out the current problems and challenges and make a preliminary discussion.Digital empowerment has arrived,and in the era of digitization,the transformation and development of higher education will lead to systemic changes in universities.This is an inevitable stage in the process of higher education development.Digital transformation will drive higher education to be more competitive,inclusive,and accessible,enabling universities to unleash their digital vitality in various service functions and contribute to the construction of a digital China.
基金supported by Guangdong Hardware and System Teaching and Research Office(Quality Engineeringproject No.HITSZERP22002)+2 种基金Guangdong Province Education Science Planning Project(Higher Education Project,Project No.2022GXJK431)Harbin Institute of Technology(Shenzhen)Course Ideological and Political Project(Project No.HITSZIP21003)Construction Project of Teachers College of Harbin Institute of Technology(Shenzhen)(Project No.HITSZSFXY202201)。
文摘Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.
基金supported by the National Natural Science Foundation of China (62202352,61902039,61972300)the Basic and Applied Basic Research Program of Guangdong Province (2021A1515110518)the Key Research and Development Program of Shaanxi Province (2020ZDLGY09-04)。
文摘Dear Editor,This letter presents a multi-automated guided vehicles(AGV) routing planning method based on deep reinforcement learning(DRL)and recurrent neural network(RNN), specifically utilizing proximal policy optimization(PPO) and long short-term memory(LSTM).
基金Higher Education Society of Shaanxi Province 2019 Higher Education Science Research Project(XGH19120:Wisdom Teaching Scene in Cloud model evaluation system key technology research)2019 school-level Higher Education Science Research Project(GJY-2019-YB-20).
文摘At the beginning of 2020,the“COVID-19”came out.Affected by the outbreaks,the universities have to carry out online teaching.Online learning provides students with full freedom and personalized learning space,but at the same time,it also brings problems such as weak feelings between teachers and students and lack of learning experience.To solve these problems,this paper adopts the methods of questionnaire survey,experimental control and behavioral modeling.This paper studies how teachers’emotional support behavior affects students’learning process and learning emotion in online learning environment,and proposes that teachers’emotional support behavior is appealed and desired by students.Positive teachers’emotional support behavior can promote students’learning process and improve students’learning emotion.
基金supported in part by the National Natural Science Foundation of China(61772493)in part by the Guangdong Province Universities and College Pearl River Scholar Funded Scheme(2019)in part by the Natural Science Foundation of Chongqing(cstc2019jcyjjq X0013)。
文摘With the continuous improvement of automation,industrial robots have become an indispensable part of automated production lines.They widely used in a number of industrial production activities,such as spraying,welding,handling,etc.,and have a great role in these sectors.Recently,the robotic technology is developing towards high precision,high intelligence.Robot calibration technology has a great significance to improve the accuracy of robot.However,it has much work to be done in the identification of robot parameters.The parameter identification work of existing serial and parallel robots is introduced.On the one hand,it summarizes the methods for parameter calibration and discusses their advantages and disadvantages.On the other hand,the application of parameter identification is introduced.This overview has a great reference value for robot manufacturers to choose proper identification method,points further research areas for researchers.Finally,this paper analyzes the existing problems in robot calibration,which may be worth researching in the future.
基金supported in part by the National Natural Science Foundation of China(12271146,12161036,61866011,11961025,61976120)the Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)Discovery Grant from Natural Science and Engineering Research Council of Canada(NSERC)。
文摘Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.
基金supported in part by the National Natural Science Foundation of China (62272078)the CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-035A)the Doctoral Student Talent Training Program of Chongqing University of Posts and Telecommunications (BYJS202009)。
文摘Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users' normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives,thereby promoting further research into this emerging and important field.
基金This work is supported in part by the Education and Teaching Reform Project of Xidian University(A21004)the New Experimental Equipment Development Project of Xidian University(YQ21003K).
文摘Digital Logic is a fundamental course of majors in electronic information.The simulation experiment is an essential measure to help students understand the principles of digital logic.It can improve the efficiency of physical experiments and decrease instrument damage caused by operating errors.CircuitVerse is an open-source and Web-based tool of circuit design and simulation for teaching purposes.And now,teachers and students in many colleges and universities use it to assist teaching and learning.Firstly,through a particular example,the features of CircuitVerse and its usage are explained.Secondly,we briefly introduce the application of CircuitVerse in our teaching as well as the following development plans.We believe that our introduction can help teachers understand the software and how to make full use of this tool.
基金supported in part by the National Natural Science Foundation of China(61673123)the Natural Science Foundation of Guangdong Province,China(2020A151501482)+1 种基金the Science and Technology development fund(FDCT),Macao SAR(0083/2021/A2,0015/2020/AMJ)Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)。
文摘As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly important.Thanks to the coupling of neighboring cluster tools and coordination of multiple robots in a multi-cluster tool,wafer production scheduling becomes rather complicated.After a wafer is processed,due to high-temperature chemical reactions in a chamber,the robot should be controlled to take it out of the processing chamber at the right time.In order to ensure the uniformity of integrated circuits on wafers,it is highly desirable to make the differences in wafer post-processing time among the individual tools in a multicluster tool as small as possible.To achieve this goal,for the first time,this work aims to find an optimal schedule for a dual-arm multi-cluster tool to regulate the wafer post-processing time.To do so,we propose polynomial-time algorithms to find an optimal schedule,which can achieve the highest throughput,and minimize the total post-processing time of the processing steps.We propose a linear program model and another algorithm to balance the differences in the post-processing time between any pair of adjacent cluster tools.Two industrial examples are given to illustrate the application and effectiveness of the proposed method.
基金Shenzhen Science and Technology Program,Grant/Award Number:ZDSYS20211021111415025Shenzhen Institute of Artificial Intelligence and Robotics for SocietyYouth Science and Technology Talents Development Project of Guizhou Education Department,Grant/Award Number:QianJiaoheKYZi[2018]459。
文摘Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.
基金supported by the Informatization Project,Chinese Academy of Sciences(No.CAS-wx2022gc-0304).
文摘With the rapid rise of new media platforms such as Weibo and Tiktok,communities with science communication characteristics have progressively grown on social networks.These communities pursue essential objectives such as increased visibility and influence.For the success of the public understanding of science in China,case studies of science communication communities on social media are becoming increasingly valuable as a point of reference.The authenticity of user influence plays an important role in the analysis of the final outcome during the process of community detection.By integrating counterfactual reasoning theory into a community detection algorithm,we present a novel paradigm for eliminating influence bias in online communities.We consider the community of Public Science Day of the Chinese Academy of Sciences as a case study to demonstrate the validity of the proposed paradigm.In addition,we examine data on science communication activities,analyze the key elements of activity communication,and provide references for not only augmenting the communication impact of similar types of popular science activities but also advancing science communication in China.Our main finding is that the propagation channel for the science communication experiment exhibits multi-point scattered propagation and lacks a continuous chain in the process of propagation.
基金supported in part by the National Natural Science Foundation of China(61772493)the Deanship of Scientific Research(DSR)at King Abdulaziz University(RG-48-135-40)+1 种基金Guangdong Province Universities and College Pearl River Scholar Funded Scheme(2019)the Natural Science Foundation of Chongqing(cstc2019jcyjjqX0013)。
文摘A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability.
基金the National Natural Science Foundation of China(61673123,61803397)the Science and Technology Development Fund(FDCT)of Macao(106/2016/A3,005/2018/A1,011/2017/A,0017/2019/A1)
文摘Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states.Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a closedown period that evolves from the steady state period. Finally,industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.
基金supported by China Postdoctoral Science Foundation(2015M582355)the Doctor Scientific Research Start Project from Hubei University of Science and Technology(BK1418)National Natural Science Foundation of China(61271256)
基金the CAAI-Huawei Mind Spore Open Fund(CAAIXSJLJJ-2021-035A)the Doctoral Student Talent Training Program of Chongqing University of Posts and Telecommunications(BYJS202009)。
文摘Dear editor,This letter presents a novel symmetry and nonnegativity-constrained matrix factorization(SNCMF)-based community detection model on undirected networks such as a social network.Community is a fundamental characteristic of a network,making community detection a vital yet thorny issue in network representation.Owing to its high interpretability and scalability。
基金Supported by the National Natural Science Foundation of China(No.60872041,61072066)Fundamental Research Funds for the Central Universities(JYI0000903001,JYI0000901034)
文摘To resolve the problem of quantitative analysis in hybrid cloud,a quantitative analysis method,which is based on the security entropy,is proposed.Firstly,according to the information theory,the security entropy is put forward to calculate the uncertainty of the system' s determinations on the irregular access behaviors.Secondly,based on the security entropy,security theorems of hybrid cloud are defined.Finally,typical access control models are analyzed by the method,the method's practicability is validated,and security and applicability of these models are compared.Simulation results prove that the proposed method is suitable for the security quantitative analysis of the access control model and evaluation to access control capability in hybrid cloud.
基金supported by the National Natural Science Foundation of China(61572092,61702403)the Fundamental Research Funds for the Central Universities(JB170308,JBF180301)+2 种基金the Project Funded by China Postdoctoral Science Foundation(2018M633473)the Basic Research Project of Weinan Science and Technology Bureau(ZDYF-JCYJ-17)the Project of Shaanxi Provincial Supports Discipline(Mathematics)
文摘In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely substituted Franklin-Fourier moments and weighted Franklin-Fourier moments(SFFMs and WFFMs),which are orthogonal in polar coordinates.The radial kernel functions of SFFMs and WFFMs are transformed Franklin functions and Franklin functions are composed of a class of complete orthogonal splines function system of degree one.Therefore,it provides the possibility of avoiding calculating high order polynomials,and thus the accurate values of SFFMs and WFFMs can be obtained directly with little computational cost.Theoretical and experimental results show that Franklin functions are not well suited for constructing higher-order moments of SFFMs and WFFMs,but compared with traditional orthogonal moments(e.g.,BFMs,OFMs and ZMs)in polar coordinates,the proposed two types of Franklin-Fourier Moments have better performance respectively in lower-order moments.
基金supported in part by MOST under Grants No.105-2221-E-324-015 and No.103-2632-E-324-001-MY3
文摘Difference expansion(DE) is one of the famous schemes in the field of reversible data hiding.With the high efficiency and simplicity,DE also has received more attention over the years.DE has a good information capacity,but due to its major location map,the pure payload is rather low.Therefore many scholars did relevant improvements which let n pixels as a unit instead of the original two pixels as a unit and can adaptively adjust the number of embedding secret information according to the smoothness degree of the block,which achieves the result of improving the information payload or the image quality.In this paper,the study of DE-based reversible data hiding schemes is comprehensively discussed.The performance of DEbased schemes is evaluated and compared in terms of embedding capacity and stego-image quality.
文摘A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of knowledge triples,it is difficult to directly display to researchers.Semantic Link Network is an attempt,and it can deal with the construction,representation and reasoning of semantics naturally.Based on the Semantic Link Network,this paper explores the representation and construction of knowledge graph,and develops an academic knowledge graph prototype system to realize the representation,construction and visualization of knowledge graph.