Existing power grid fault diagnosis methods relyon manual experience to design diagnosis models, lack theability to extract fault knowledge, and are difficult to adaptto complex and changeable engineering sites. Consi...Existing power grid fault diagnosis methods relyon manual experience to design diagnosis models, lack theability to extract fault knowledge, and are difficult to adaptto complex and changeable engineering sites. Considering thissituation, this paper proposes a power grid fault diagnosismethod based on a deep pyramid convolutional neural networkfor the alarm information set. This approach uses the deepfeature extraction ability of the network to extract fault featureknowledge from alarm information texts and achieve end-to-endfault classification and fault device identification. First, a deeppyramid convolutional neural network model for extracting theoverall characteristics of fault events is constructed to identifyfault types. Second, a deep pyramidal convolutional neuralnetwork model for alarm information text is constructed, thetext description characteristics associated with alarm informationtexts are extracted, the key information corresponding to faultsin the alarm information set is identified, and suspicious faultydevices are selected. Then, a fault device identification strategythat integrates fault-type and time sequence priorities is proposedto identify faulty devices. Finally, the actual fault cases and thefault cases generated by the simulation are studied, and theresults verify the effectiveness and practicability of the methodpresented in this paper.展开更多
基金the National Natural Science Foundation of China(51877079).
文摘Existing power grid fault diagnosis methods relyon manual experience to design diagnosis models, lack theability to extract fault knowledge, and are difficult to adaptto complex and changeable engineering sites. Considering thissituation, this paper proposes a power grid fault diagnosismethod based on a deep pyramid convolutional neural networkfor the alarm information set. This approach uses the deepfeature extraction ability of the network to extract fault featureknowledge from alarm information texts and achieve end-to-endfault classification and fault device identification. First, a deeppyramid convolutional neural network model for extracting theoverall characteristics of fault events is constructed to identifyfault types. Second, a deep pyramidal convolutional neuralnetwork model for alarm information text is constructed, thetext description characteristics associated with alarm informationtexts are extracted, the key information corresponding to faultsin the alarm information set is identified, and suspicious faultydevices are selected. Then, a fault device identification strategythat integrates fault-type and time sequence priorities is proposedto identify faulty devices. Finally, the actual fault cases and thefault cases generated by the simulation are studied, and theresults verify the effectiveness and practicability of the methodpresented in this paper.