In order to accelerate the chronic wounds healing, we investigated the healing effects of bioactive glass and Yuunan baiyao ointments in streptozotocin-induced diabetic rats. The ointments were prepared by mixing 45S5...In order to accelerate the chronic wounds healing, we investigated the healing effects of bioactive glass and Yuunan baiyao ointments in streptozotocin-induced diabetic rats. The ointments were prepared by mixing 45S5 bioactive glass powder (16% weight) with Vaseline and different weight percentages of Yurman baiyao. Full-thickness defect wounds were created on the back of 130 SD rats and were randomly divided into 8 groups. The wound healing rates were calculated at 4, 7, 10, 14 and 21 days after surgery. The samples were harvested for further observations. Considering the wound closure rate, group 6 (with 5% Yuunan baiyao) has better wound healing performance than other diabetic groups. The lower inflammatory response was observed by gross observation and confirmed by the results of H&E staining and TEM observation. Besides, the proliferation of fibroblasts, the formation of granulation tissue, as well as the vascularization, were improved in group 6 compared to other diabetic groups. All results suggest that bioactive glass and Yunnan baiyao ointments can accelerate the recovery of diabetes-impaired skin wounds, and comparing to other diabetic groups, group 6 (with 5% Yunnan baiyao) has better healing effect.展开更多
Cr2O3 can be sintered well at 1500℃ in carbonembedded condition or H2 atmosphere. But the high chrome bearing refractories can not reach densification when sintered at 1 700℃ .for 10 h in weak reducing atmosphere fo...Cr2O3 can be sintered well at 1500℃ in carbonembedded condition or H2 atmosphere. But the high chrome bearing refractories can not reach densification when sintered at 1 700℃ .for 10 h in weak reducing atmosphere formed by the combustion of fuel, and its ap- parent porosity is about 18%. The high chrome bearing refractories are mainly used in coal gasifiers. The temperature in the furnace is about 1 500℃ and the products are H2 and CO, which are just the sintering conditions of the dense chrome refractories with apparent porosity less than 10%. The high chrome bearing refractories used in coal gasifiers may be sintered again and then shrink, destroying the gasifier lining. The thermodynamic calculation shows that it is safe about the high chrome bearing refractories used in gasifiers. It is also explained that the high chrome bearing refractories can't be sintered densely in weak reducing atmosphere formed by the combustion of fuel. The new sintering technologies can be used to improve the bulk density of the high chrome bearing refractories.展开更多
Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model are investigated using an infinite matrix product state algorithm.The bipartite entanglement entropy can detect a transition point...Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model are investigated using an infinite matrix product state algorithm.The bipartite entanglement entropy can detect a transition point between the two phases.In both phases,the entanglement spectrum shows double degeneracy.We calculate the nonlocal order parameter of the bond-centered inversion in both phases,which rapidly approaches a saturation value of-1 as the segment length increases.The nonlocal order parameter of the bond-centered inversion with a saturation value-1 and the nonzero value string order indicate that the Haldane phase is a symmetry-protected topological phase.To distinguish the commensurate and incommensurate Haldane phases,the transversal spin correlation and corresponding momentum distribution of the structure factor are analyzed.As a result,the transversal spin correlations exhibit different decay forms in both phases.展开更多
The application of Mg alloys is always accompanied by various coating technology, but a reliable model predicting the service life of coatings on Mg alloys is lacking but urgent. In this work, a semi-mechanistic model...The application of Mg alloys is always accompanied by various coating technology, but a reliable model predicting the service life of coatings on Mg alloys is lacking but urgent. In this work, a semi-mechanistic model was proposed to predict the service life of plasma electrolytic oxidation (PEO) coating/electrophoretic coatings on a VW63Z Mg alloy;the model was decomposed into three parts: a first part depicting the degradation time of organic coating (L_(1)) and the diffusion time of electrolyte in the inorganic coating (L_(2)), respectively;a second part interpreting the breakdown of coatings due to the corrosion process (L_(3));a final part establishing an algorithm converting the accelerated tests into the real service environment (α);the effect of structural stress and dissimilar metal joints on the service life of coatings was also considered. Based on the ongoing accelerated experiments, the semi-mechanistic model could be able to predict the service life of both PEO coatings and composite coatings on VW63Z Mg alloy with a satisfiable precision.展开更多
The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrosco...The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 7A55 aluminum alloy mainly consists of the dendritic network of aluminum solid solution, Al/AIZnMgCu eutectic phases, and intermetaUic compounds MgZn2, Al2CuMg, Al7Cu2Fe, and Al23CuFe4. After homogenization at 470℃ for 48 h, Al/AlZnMgCu eutectic phases are dissolved into the matrix, and a small amount of high melting-point secondary phases were formed, which results in an increasing of the starting melting temperature of 7A55 aluminum alloy The high melting-point secondary phases were eliminated mostly when the homogenization time achieved to 72 h. Therefore, the reasonable homogenization heat treatment process for 7A55 aluminum alloy ingots was chosen as 470℃/72 h.展开更多
The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experie...The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions. More importantly, the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered, in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic. The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.展开更多
In this study,Al-30W(wt.%)alloy powder was prepared by Aluminothermic reduction and hightemperature gas atomization.We then studied the phase composition,surface morphology,spatial phase structure,and thermal oxidatio...In this study,Al-30W(wt.%)alloy powder was prepared by Aluminothermic reduction and hightemperature gas atomization.We then studied the phase composition,surface morphology,spatial phase structure,and thermal oxidation process using XRD,SEM/EDS,TEM,DSC,and DTA/TG analysis.The results showed that the Al-30W alloy powder exhibited high sphericity,and the interior presented a special spatial phase structure in which the Al/W amorphous alloy phase and the metastable Al/W intermetallic compound phase were distributed in the pure Al matrix.When the Al-30W alloy powder was stabilized in a vacuum tube furnace,the spatial phase structure of the alloy powder changed,and a small amount of pure Al was embedded in the Al_(12)W matrix.The resulting Al-30W alloy powder products,treated in air at different temperatures,were collected in situ and characterized.The results presented that with an increase in temperature,the types and morphologies of the Al/W intermetallic compounds in the Al-30W alloy powder changed.Furthermore,the Al-30W alloy powder began to undergo intense oxidation reactions at about 900℃,accompanied by a concentrated energy release and rapid weight gain.The volatilization of WO_(3)produced in the oxidation process promoted the complete oxidation of the Al-30W alloy powder,and the Al-30W alloy powder was completely oxidized at 1300℃.At this stage,all W atoms were transformed into gaseous WO_(3),and only a large number of small Al_(2)O_(3)fragments remained in the oxidation product.Thus,the Al-30W alloy powder exhibited excellent thermal reactivity and oxidation integrity,and may offer excellent application prospects in the field of energetic materials.展开更多
This paper presents a hybrid model reliability analysis method based on the damped Newton method with both random and interval variables to solve the hybrid structure reliability problem.The method combines an outer i...This paper presents a hybrid model reliability analysis method based on the damped Newton method with both random and interval variables to solve the hybrid structure reliability problem.The method combines an outer iterative solution and inner layer numerical calculation.In the outer iteration,the method seeks an optimized solution to the interval variable iterative by adding the boundary constraint condition based on the damped Newton optimization theory.In the inner layer solution,the method first reduces the dimension of the random variable through the dimension reduction method,then obtains the first four-order central moment of the function through the application of the Taylor expansion method,and finally calculates the reliability index of the structure according to the fourth-order moment calculation structure of the function.The results of a numerical example and an engineering ten-rod truss structure show that the proposed method can effectively solve the random-interval hybrid reliability problem and has better calculation accuracy than that of the two-layer iterative method.展开更多
Hydrogenation/deuteration of carbon chloride(C–Cl)bonds is of high significance but remains a remarkable challenge in synthetic chemistry,especially using safe and inexpensive hydrogen donors.In this article,a visibl...Hydrogenation/deuteration of carbon chloride(C–Cl)bonds is of high significance but remains a remarkable challenge in synthetic chemistry,especially using safe and inexpensive hydrogen donors.In this article,a visible-light-photocatalytic watersplitting hydrogenation technology(WSHT)is proposed to in-situ generate active H-species(i.e.,Had)for controllable hydrogenation of aryl chlorides instead of using flammable H2.When applying heavy water-splitting systems,we could selectively install deuterium at the C–Cl position of aryl chlorides under mild conditions for the sustainable synthesis of high-valued added deuterated chemicals.Sub-micrometer Pd nanosheets(Pd NSs)decorated crystallined polymeric carbon nitrides(CPCN)is developed as the bifunctional photocatalyst,whereas Pd NSs not only serve as a cocatalyst of CPCN to generate and stabilize H(D)-species but also play a significant role in the sequential activation and hydrogenation/deuteration of C–Cl bonds.This article highlights a photocatalytic-WSHT for controllable hydrogenation/deuteration of low-cost aryl chlorides,providing a promising way for the photosynthesis of high-valued added chemicals instead of the hydrogen evolution.展开更多
Nb_(2)S_(2)C is a van der Waals type layered superconductor with a transition temperature Tc=7.6 K.In this paper,detailed calculations of the electronic structure and topological properties of Nb_(2)S_(2)C were perfor...Nb_(2)S_(2)C is a van der Waals type layered superconductor with a transition temperature Tc=7.6 K.In this paper,detailed calculations of the electronic structure and topological properties of Nb_(2)S_(2)C were performed from first principles.We find that Nb2S2C is a highly anisotropic metal with multi-band characteristics.In the absence of spin-orbit coupling(SOC),there appears one pair of triply degenerate points created by band inversion along the Γ-A line.When SOC is considered,the triple points are gapped.Intriguingly,two distinct types of topological states,including topological Dirac semimetal and topological insulator states,co-emergence in the vicinity of Fermi level.Moreover,the topology of Nb_(2)S_(2)C is robust to external pressure and the Fermi level can be shifted downward to the topological Dirac semimetal state and topological insulator state at 10 GPa and 14 GPa,respectively.The results herein provide a new platform not only for the studies of physics of low-dimensional superconductor but also for further investigations of topological superconductivity.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.50830101,51172073)the National Program on Key Basic Research Project(973 Program)(Nos.2011CB606204,2012CB619100)
文摘In order to accelerate the chronic wounds healing, we investigated the healing effects of bioactive glass and Yuunan baiyao ointments in streptozotocin-induced diabetic rats. The ointments were prepared by mixing 45S5 bioactive glass powder (16% weight) with Vaseline and different weight percentages of Yurman baiyao. Full-thickness defect wounds were created on the back of 130 SD rats and were randomly divided into 8 groups. The wound healing rates were calculated at 4, 7, 10, 14 and 21 days after surgery. The samples were harvested for further observations. Considering the wound closure rate, group 6 (with 5% Yuunan baiyao) has better wound healing performance than other diabetic groups. The lower inflammatory response was observed by gross observation and confirmed by the results of H&E staining and TEM observation. Besides, the proliferation of fibroblasts, the formation of granulation tissue, as well as the vascularization, were improved in group 6 compared to other diabetic groups. All results suggest that bioactive glass and Yunnan baiyao ointments can accelerate the recovery of diabetes-impaired skin wounds, and comparing to other diabetic groups, group 6 (with 5% Yunnan baiyao) has better healing effect.
文摘Cr2O3 can be sintered well at 1500℃ in carbonembedded condition or H2 atmosphere. But the high chrome bearing refractories can not reach densification when sintered at 1 700℃ .for 10 h in weak reducing atmosphere formed by the combustion of fuel, and its ap- parent porosity is about 18%. The high chrome bearing refractories are mainly used in coal gasifiers. The temperature in the furnace is about 1 500℃ and the products are H2 and CO, which are just the sintering conditions of the dense chrome refractories with apparent porosity less than 10%. The high chrome bearing refractories used in coal gasifiers may be sintered again and then shrink, destroying the gasifier lining. The thermodynamic calculation shows that it is safe about the high chrome bearing refractories used in gasifiers. It is also explained that the high chrome bearing refractories can't be sintered densely in weak reducing atmosphere formed by the combustion of fuel. The new sintering technologies can be used to improve the bulk density of the high chrome bearing refractories.
基金the National Natural Science Foundation of China(Grant No.11805285)the Natural Science Foundation of Shaanxi Province of China(Grant No.2022JM-033)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN 201900703)。
文摘Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model are investigated using an infinite matrix product state algorithm.The bipartite entanglement entropy can detect a transition point between the two phases.In both phases,the entanglement spectrum shows double degeneracy.We calculate the nonlocal order parameter of the bond-centered inversion in both phases,which rapidly approaches a saturation value of-1 as the segment length increases.The nonlocal order parameter of the bond-centered inversion with a saturation value-1 and the nonzero value string order indicate that the Haldane phase is a symmetry-protected topological phase.To distinguish the commensurate and incommensurate Haldane phases,the transversal spin correlation and corresponding momentum distribution of the structure factor are analyzed.As a result,the transversal spin correlations exhibit different decay forms in both phases.
基金support from the National Natural Science Foundation of China(No.52201066)the National Program for the Young Top-notch Professionals.
文摘The application of Mg alloys is always accompanied by various coating technology, but a reliable model predicting the service life of coatings on Mg alloys is lacking but urgent. In this work, a semi-mechanistic model was proposed to predict the service life of plasma electrolytic oxidation (PEO) coating/electrophoretic coatings on a VW63Z Mg alloy;the model was decomposed into three parts: a first part depicting the degradation time of organic coating (L_(1)) and the diffusion time of electrolyte in the inorganic coating (L_(2)), respectively;a second part interpreting the breakdown of coatings due to the corrosion process (L_(3));a final part establishing an algorithm converting the accelerated tests into the real service environment (α);the effect of structural stress and dissimilar metal joints on the service life of coatings was also considered. Based on the ongoing accelerated experiments, the semi-mechanistic model could be able to predict the service life of both PEO coatings and composite coatings on VW63Z Mg alloy with a satisfiable precision.
基金financially supported by the National Key Technologies R&D Program of China (No.2007BAE38B06)the National Natural Science Foundation of China (No.50904010)
文摘The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 7A55 aluminum alloy mainly consists of the dendritic network of aluminum solid solution, Al/AIZnMgCu eutectic phases, and intermetaUic compounds MgZn2, Al2CuMg, Al7Cu2Fe, and Al23CuFe4. After homogenization at 470℃ for 48 h, Al/AlZnMgCu eutectic phases are dissolved into the matrix, and a small amount of high melting-point secondary phases were formed, which results in an increasing of the starting melting temperature of 7A55 aluminum alloy The high melting-point secondary phases were eliminated mostly when the homogenization time achieved to 72 h. Therefore, the reasonable homogenization heat treatment process for 7A55 aluminum alloy ingots was chosen as 470℃/72 h.
基金supported by the National Research Foundation of Korea through WCU(R31-2009-000-10083-0)
文摘The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions. More importantly, the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered, in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic. The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.
基金supported by the National Natural Science Foundation of China(No.51871106).We express our grat-itude for analyzing and testing of Huazhong University of Science and Technology Analytical&Testing Center.
文摘In this study,Al-30W(wt.%)alloy powder was prepared by Aluminothermic reduction and hightemperature gas atomization.We then studied the phase composition,surface morphology,spatial phase structure,and thermal oxidation process using XRD,SEM/EDS,TEM,DSC,and DTA/TG analysis.The results showed that the Al-30W alloy powder exhibited high sphericity,and the interior presented a special spatial phase structure in which the Al/W amorphous alloy phase and the metastable Al/W intermetallic compound phase were distributed in the pure Al matrix.When the Al-30W alloy powder was stabilized in a vacuum tube furnace,the spatial phase structure of the alloy powder changed,and a small amount of pure Al was embedded in the Al_(12)W matrix.The resulting Al-30W alloy powder products,treated in air at different temperatures,were collected in situ and characterized.The results presented that with an increase in temperature,the types and morphologies of the Al/W intermetallic compounds in the Al-30W alloy powder changed.Furthermore,the Al-30W alloy powder began to undergo intense oxidation reactions at about 900℃,accompanied by a concentrated energy release and rapid weight gain.The volatilization of WO_(3)produced in the oxidation process promoted the complete oxidation of the Al-30W alloy powder,and the Al-30W alloy powder was completely oxidized at 1300℃.At this stage,all W atoms were transformed into gaseous WO_(3),and only a large number of small Al_(2)O_(3)fragments remained in the oxidation product.Thus,the Al-30W alloy powder exhibited excellent thermal reactivity and oxidation integrity,and may offer excellent application prospects in the field of energetic materials.
基金supported by the National Natural Science Foundation of China(No.51775230)。
文摘This paper presents a hybrid model reliability analysis method based on the damped Newton method with both random and interval variables to solve the hybrid structure reliability problem.The method combines an outer iterative solution and inner layer numerical calculation.In the outer iteration,the method seeks an optimized solution to the interval variable iterative by adding the boundary constraint condition based on the damped Newton optimization theory.In the inner layer solution,the method first reduces the dimension of the random variable through the dimension reduction method,then obtains the first four-order central moment of the function through the application of the Taylor expansion method,and finally calculates the reliability index of the structure according to the fourth-order moment calculation structure of the function.The results of a numerical example and an engineering ten-rod truss structure show that the proposed method can effectively solve the random-interval hybrid reliability problem and has better calculation accuracy than that of the two-layer iterative method.
基金supported by the National Natural Science Foundation of China(21972094,51701127,21401190)China Postdoctoral Science Foundation(2017M612709)+5 种基金Guangdong Special Support ProgramPengcheng Scholar ProgramShenzhen Peacock Plan(KQJSCX20170727100802505,KQTD2016053112042971)Educational Commission of Guangdong Province(2016KTSCX126)Foundation for Distinguished Young Talents in Higher Education of Guangdong(2018KQNCX221)Shenzhen Innovation Program(JCYJ20170818142642395).
文摘Hydrogenation/deuteration of carbon chloride(C–Cl)bonds is of high significance but remains a remarkable challenge in synthetic chemistry,especially using safe and inexpensive hydrogen donors.In this article,a visible-light-photocatalytic watersplitting hydrogenation technology(WSHT)is proposed to in-situ generate active H-species(i.e.,Had)for controllable hydrogenation of aryl chlorides instead of using flammable H2.When applying heavy water-splitting systems,we could selectively install deuterium at the C–Cl position of aryl chlorides under mild conditions for the sustainable synthesis of high-valued added deuterated chemicals.Sub-micrometer Pd nanosheets(Pd NSs)decorated crystallined polymeric carbon nitrides(CPCN)is developed as the bifunctional photocatalyst,whereas Pd NSs not only serve as a cocatalyst of CPCN to generate and stabilize H(D)-species but also play a significant role in the sequential activation and hydrogenation/deuteration of C–Cl bonds.This article highlights a photocatalytic-WSHT for controllable hydrogenation/deuteration of low-cost aryl chlorides,providing a promising way for the photosynthesis of high-valued added chemicals instead of the hydrogen evolution.
基金supported by the Natural Science Foundation of China (Grant No. 52073075)Shenzhen Science and Technology Program (Grant No. KQTD20170809110344233)Science and Technology Innovation Talents Program of Henan Province (Grant No. 174200510010)。
文摘Nb_(2)S_(2)C is a van der Waals type layered superconductor with a transition temperature Tc=7.6 K.In this paper,detailed calculations of the electronic structure and topological properties of Nb_(2)S_(2)C were performed from first principles.We find that Nb2S2C is a highly anisotropic metal with multi-band characteristics.In the absence of spin-orbit coupling(SOC),there appears one pair of triply degenerate points created by band inversion along the Γ-A line.When SOC is considered,the triple points are gapped.Intriguingly,two distinct types of topological states,including topological Dirac semimetal and topological insulator states,co-emergence in the vicinity of Fermi level.Moreover,the topology of Nb_(2)S_(2)C is robust to external pressure and the Fermi level can be shifted downward to the topological Dirac semimetal state and topological insulator state at 10 GPa and 14 GPa,respectively.The results herein provide a new platform not only for the studies of physics of low-dimensional superconductor but also for further investigations of topological superconductivity.