期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Robust Attitude Control for Reusable Launch Vehicles Based on Fractional Calculus and Pigeon-inspired Optimization 被引量:4
1
作者 Qiang Xue Haibin Duan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期89-97,共9页
In this paper, a robust attitude control system based on fractional order sliding mode control and dynamic inversion approach is presented for the reusable launch vehicle(RLV)during the reentry phase. By introducing t... In this paper, a robust attitude control system based on fractional order sliding mode control and dynamic inversion approach is presented for the reusable launch vehicle(RLV)during the reentry phase. By introducing the fractional order sliding surface to replace the integer order one, we design robust outer loop controller to compensate the error introduced by inner loop controller designed by dynamic inversion approach. To take the uncertainties of aerodynamic parameters into account,stochastic robustness design approach based on the Monte Carlo simulation and Pigeon-inspired optimization is established to increase the robustness of the controller. Some simulation results are given out which indicate the reliability and effectiveness of the attitude control system. 展开更多
关键词 Attitude control fractional calculus pigeoninspired optimization reusable launch vehicle(RLV) sliding mode control
下载PDF
A Predator-prey Particle Swarm Optimization Approach to Multiple UCAV Air Combat Modeled by Dynamic Game Theory 被引量:19
2
作者 Haibin Duan Pei Li Yaxiang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期11-18,共8页
Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, e... Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, each side seeks the best scheme with the purpose of maximizing its own objective function. In this paper, a game theoretic approach based on predatorprey particle swarm optimization(PP-PSO) is presented, and the dynamic task assignment problem for multiple unmanned combat aerial vehicles(UCAVs) in military operation is decomposed and modeled as a two-player game at each decision stage. The optimal assignment scheme of each stage is regarded as a mixed Nash equilibrium, which can be solved by using the PP-PSO. The effectiveness of our proposed methodology is verified by a typical example of an air military operation that involves two opposing forces: the attacking force Red and the defense force Blue. 展开更多
关键词 Unmanned combat aerial vehicle(UCAV) game theory air combat PREDATOR-PREY particle swarm optimization(PSO) Nash equilibrium
下载PDF
Decoupling Trajectory Tracking for Gliding Reentry Vehicles 被引量:4
3
作者 Zixuan Liang Zhang Ren Xingyue Shao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期115-120,共6页
A decoupling trajectory tracking method for gliding reentry vehicles is presented to improve the reliability of the guidance system. Function relations between state variables and control variables are analyzed. To re... A decoupling trajectory tracking method for gliding reentry vehicles is presented to improve the reliability of the guidance system. Function relations between state variables and control variables are analyzed. To reduce the coupling between control channels, the multiple-input multiple-output(MIMO)tracking system is separated into a series of two single-input single-output(SISO) subsystems. Tracking laws for both velocity and altitude are designed based on the sliding mode control(SMC). The decoupling approach is verified by the Monte Carlo simulations, and compared with the linear quadratic regulator(LQR) approach in some specific conditions. Simulation results indicate that the decoupling approach owns a fast convergence speed and a strong anti-interference ability in the trajectory tracking. 展开更多
关键词 HYPERSONIC reentry vehicle decoupling control trajectory tracking sliding mode control(SMC)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部