Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bot...Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bottom surface of graphene is also inevitable;therefore, cleaning the bottom surface is crucial. In this study, we proposed an improved graphene wet transfer method using an ultrasonic processing(UP) step for etching copper(Cu). Using this method, the bottom surface can be cleaned efficiently. The results of atomic force microscopy(AFM)and Raman spectroscopy mapping revealed that the graphene films transferred with UP had smoother and cleaner surfaces, less contamination, and higher quality than those transferred without UP.展开更多
基金supported by the National Key Research and Development Program of China under Grants No.2017YFA0701000and No.2020YFA0714001the National Natural Science Foundation of China under Grants No.61988102,No.61921002,and No.62071108the Fundamental Research Funds for the Central Universities under Grants No.ZYGX2020J003 and No.ZYGX2020ZB007。
文摘Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bottom surface of graphene is also inevitable;therefore, cleaning the bottom surface is crucial. In this study, we proposed an improved graphene wet transfer method using an ultrasonic processing(UP) step for etching copper(Cu). Using this method, the bottom surface can be cleaned efficiently. The results of atomic force microscopy(AFM)and Raman spectroscopy mapping revealed that the graphene films transferred with UP had smoother and cleaner surfaces, less contamination, and higher quality than those transferred without UP.