Microwave magneto-optic (MO) modulators can directly transform radio frequency (RF) signals into optical data through the Bragg diffraction of guided optical waves (GOWs) induced by microwave magneto-static wav...Microwave magneto-optic (MO) modulators can directly transform radio frequency (RF) signals into optical data through the Bragg diffraction of guided optical waves (GOWs) induced by microwave magneto-static waves (MSWs). According to the MO coupled-mode theory, the modulation of continuous GOWs by a rectangular magneto-static-forwardvolume-wave (MSFVW) pulse in MO film waveguide is studied in the small signal case and the modulated optical pulse at the output is analyzed by means of an analytical form, which is dependent on the instantaneous diffraction intensity determined by the overlap of rectangular MSFVW pulse and light beam aperture. On the basis of it, the characteristics of MSFVW-based MO modulators can be explained well for the case of rectangular pulse modulation. It is also shown that the line codes of optical data generated by MO Bragg modulators can be controlled by adjusting the duty factor of modulating pulse signals.展开更多
基金supported by the National Natural Science Foundation of China under Grant No 60671027the Application Basis Research Foundation of Sichuan Province under Grant No 07JY029-089
文摘Microwave magneto-optic (MO) modulators can directly transform radio frequency (RF) signals into optical data through the Bragg diffraction of guided optical waves (GOWs) induced by microwave magneto-static waves (MSWs). According to the MO coupled-mode theory, the modulation of continuous GOWs by a rectangular magneto-static-forwardvolume-wave (MSFVW) pulse in MO film waveguide is studied in the small signal case and the modulated optical pulse at the output is analyzed by means of an analytical form, which is dependent on the instantaneous diffraction intensity determined by the overlap of rectangular MSFVW pulse and light beam aperture. On the basis of it, the characteristics of MSFVW-based MO modulators can be explained well for the case of rectangular pulse modulation. It is also shown that the line codes of optical data generated by MO Bragg modulators can be controlled by adjusting the duty factor of modulating pulse signals.