目的手写汉字纠错(handwritten Chinese character error correction,HCCEC)任务具有两重性,即判断汉字正确性和对错字进行纠正,该任务在教育场景下应用广泛,可以帮助学生学习汉字、纠正书写错误。由于手写汉字具有复杂的空间结构、多...目的手写汉字纠错(handwritten Chinese character error correction,HCCEC)任务具有两重性,即判断汉字正确性和对错字进行纠正,该任务在教育场景下应用广泛,可以帮助学生学习汉字、纠正书写错误。由于手写汉字具有复杂的空间结构、多样的书写风格以及巨大的数量,且错字与正确字之间具有高度的相似性,因此,手写汉字纠错的关键是如何精确地建模一个汉字。为此,提出一种层级部首网络(hierarchical radical network,HRN)。方法从部首字形的角度出发,挖掘部首形状结构上的相似性,通过注意力模块捕获包含部首信息的细粒度图像特征,增大相似字之间的区分性。另外,结合汉字本身的层级结构特性,采用基于概率解码的思路,对部首的层级位置进行建模。结果在手写汉字数据集上进行实验,与现有方案相比,HRN在正确字测试集与错字测试集上,精确率分别提升了0.5%和9.8%,修正率在错字测试集上提升了15.3%。此外,通过注意力机制的可视化分析,验证了HRN可以捕捉包含部首信息的细粒度图像特征。部首表征之间的欧氏距离证明了HRN学习到的部首表征向量中包含了部首的字形结构信息。结论本文提出的HRN能够更好地对相似部首进行区分,进而精确地区分正确字与错字,具有很强的鲁棒性和泛化性。展开更多
目的以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊...目的以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 d B、0.18 d B、0.07 d B;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别提高了0.17 d B、0.28 d B、0.16 d B。同时也在GOPRO数据集上进行了对比实验以验证Transformer融合网络的有效性。对比实验结果表明,提出的网络明显提升了对模糊图像超分辨重建的效果。结论本文所提出的用于模糊图像超分辨的Transformer融合网络,具有优异的长程依赖关系和全局信息捕捉能力,其通过多头自注意力层计算特征图任一局部信息在全局信息上的响应,实现了对去模糊特征和细节纹理特征在全局语义层次的深度融合,从而提升了对模糊图像进行超分辨重建的效果。展开更多
目的远程光体积描记(remote photoplethysmography,r PPG)是一种基于视频的非接触式心率测量技术,受到学者的广泛关注。从视频数据中提取脉搏信号需要同时考虑时间和空间信息,然而现有方法往往将空间处理与时间处理割裂开,从而造成建模...目的远程光体积描记(remote photoplethysmography,r PPG)是一种基于视频的非接触式心率测量技术,受到学者的广泛关注。从视频数据中提取脉搏信号需要同时考虑时间和空间信息,然而现有方法往往将空间处理与时间处理割裂开,从而造成建模不准确、测量精度不高等问题。本文提出一种基于多视角2维卷积的神经网络模型,对帧内和帧间相关性进行建模,从而提高测量精度。方法所提网络包括普通2维卷积块和多视角卷积块。普通2维卷积块将输入数据在空间维度做初步抽象。多视角卷积块包括3个通道,分别从输入数据的高—宽、高—时间、宽—时间3个视角进行2维卷积操作,再将3个视角的互补时空特征进行融合得到最终的脉搏信号。所提多视角2维卷积是对传统单视角2维卷积网络在时间维度的扩展。该方法不破坏视频原有结构,通过3个视角的卷积操作挖掘时空互补特征,从而提高脉搏测量精度。结果在公共数据集PURE(pulse rate detection dataset)和自建数据集Self-rPPG(self-built r PPG dataset)上的实验结果表明,所提网络提取脉搏信号的信噪比相比于传统方法在两个数据集上分别提高了3.92 d B和1.92 d B,平均绝对误差分别降低了3.81 bpm和2.91 bpm;信噪比相比于单视角网络分别提高了2.93 d B和3.20 d B,平均绝对误差分别降低了2.20 bpm和3.61 bpm。结论所提网络能够在复杂环境中以较高精度估计出受试者的脉搏信号,表明了多视角2维卷积在r PPG脉搏提取的有效性。与基于单视角2维神经网络的r PPG算法相比,本文方法提取的脉搏信号噪声、低频分量更少,泛化能力更强。展开更多
目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基...目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 d B与29.17 d B的效果。结论本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。展开更多
文摘目的手写汉字纠错(handwritten Chinese character error correction,HCCEC)任务具有两重性,即判断汉字正确性和对错字进行纠正,该任务在教育场景下应用广泛,可以帮助学生学习汉字、纠正书写错误。由于手写汉字具有复杂的空间结构、多样的书写风格以及巨大的数量,且错字与正确字之间具有高度的相似性,因此,手写汉字纠错的关键是如何精确地建模一个汉字。为此,提出一种层级部首网络(hierarchical radical network,HRN)。方法从部首字形的角度出发,挖掘部首形状结构上的相似性,通过注意力模块捕获包含部首信息的细粒度图像特征,增大相似字之间的区分性。另外,结合汉字本身的层级结构特性,采用基于概率解码的思路,对部首的层级位置进行建模。结果在手写汉字数据集上进行实验,与现有方案相比,HRN在正确字测试集与错字测试集上,精确率分别提升了0.5%和9.8%,修正率在错字测试集上提升了15.3%。此外,通过注意力机制的可视化分析,验证了HRN可以捕捉包含部首信息的细粒度图像特征。部首表征之间的欧氏距离证明了HRN学习到的部首表征向量中包含了部首的字形结构信息。结论本文提出的HRN能够更好地对相似部首进行区分,进而精确地区分正确字与错字,具有很强的鲁棒性和泛化性。
文摘目的以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 d B、0.18 d B、0.07 d B;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别提高了0.17 d B、0.28 d B、0.16 d B。同时也在GOPRO数据集上进行了对比实验以验证Transformer融合网络的有效性。对比实验结果表明,提出的网络明显提升了对模糊图像超分辨重建的效果。结论本文所提出的用于模糊图像超分辨的Transformer融合网络,具有优异的长程依赖关系和全局信息捕捉能力,其通过多头自注意力层计算特征图任一局部信息在全局信息上的响应,实现了对去模糊特征和细节纹理特征在全局语义层次的深度融合,从而提升了对模糊图像进行超分辨重建的效果。
文摘目的远程光体积描记(remote photoplethysmography,r PPG)是一种基于视频的非接触式心率测量技术,受到学者的广泛关注。从视频数据中提取脉搏信号需要同时考虑时间和空间信息,然而现有方法往往将空间处理与时间处理割裂开,从而造成建模不准确、测量精度不高等问题。本文提出一种基于多视角2维卷积的神经网络模型,对帧内和帧间相关性进行建模,从而提高测量精度。方法所提网络包括普通2维卷积块和多视角卷积块。普通2维卷积块将输入数据在空间维度做初步抽象。多视角卷积块包括3个通道,分别从输入数据的高—宽、高—时间、宽—时间3个视角进行2维卷积操作,再将3个视角的互补时空特征进行融合得到最终的脉搏信号。所提多视角2维卷积是对传统单视角2维卷积网络在时间维度的扩展。该方法不破坏视频原有结构,通过3个视角的卷积操作挖掘时空互补特征,从而提高脉搏测量精度。结果在公共数据集PURE(pulse rate detection dataset)和自建数据集Self-rPPG(self-built r PPG dataset)上的实验结果表明,所提网络提取脉搏信号的信噪比相比于传统方法在两个数据集上分别提高了3.92 d B和1.92 d B,平均绝对误差分别降低了3.81 bpm和2.91 bpm;信噪比相比于单视角网络分别提高了2.93 d B和3.20 d B,平均绝对误差分别降低了2.20 bpm和3.61 bpm。结论所提网络能够在复杂环境中以较高精度估计出受试者的脉搏信号,表明了多视角2维卷积在r PPG脉搏提取的有效性。与基于单视角2维神经网络的r PPG算法相比,本文方法提取的脉搏信号噪声、低频分量更少,泛化能力更强。
文摘目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 d B与29.17 d B的效果。结论本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。