Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with...Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).展开更多
Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical wate...Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical water splitting.Herein,we report the fabrication of heterostructured P-CoMoO_(4)@NiCoP on a Ni foam substrate through interface engineering,by adjusting its composition and architecture.Benefitting from the tailored electronic structure and exposed active sites,the heterostructured P-CoMoO_(4)@NiCoP/NF arrays can be coordinated to boost the overall water splitting.In addition,the superhydrophilic and superaerophobic properties of P-CoMoO_(4)@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process.The heterostructured PCoMoO_(4)@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 mV at 10 mA cm^(-2) for HER and 252 mV at 100 mA cm^(-2) for OER.Only 1.62 V potential is required to deliver 20 mA cm^(-2) in a two-electrode electrolysis system,providing a decent overall water splitting performance.The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity.展开更多
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat...Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.展开更多
The isolation of single layer graphene and its outstanding physical,chemical and mechanical properties has paved the way for both exploring the existing layered materials and developing novel twodimensional(2D)nanomat...The isolation of single layer graphene and its outstanding physical,chemical and mechanical properties has paved the way for both exploring the existing layered materials and developing novel twodimensional(2D)nanomaterials.The science behind 2D nanomaterials is beautiful and closely related to the dimensionality effect.In the past few years,tremendous efforts have been made investigating the material’s preparation,characterizing its fundamental properties and demonstrating its technological applications.In particular,the emergence of 2D organic semiconductors and 2D non-layered organic-inorganic hybrid perovskites have led to new opportunities for cost-effective electronics and green energy applications.展开更多
High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)and ferromagnetic cobalt ferrite(CoFe_(2)O_(4))(0.00 wt%to 0.2 wt%)are prepared by a solution casting method acc...High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)and ferromagnetic cobalt ferrite(CoFe_(2)O_(4))(0.00 wt%to 0.2 wt%)are prepared by a solution casting method accompanied by uniaxial stretching and high electric field poling.The decisive effect of the poling electric field on the power generating capability was confirmed by the experiments.For pure PVDF-HFP films,when the maximum electric field Emax is 120 MV/m,the calibrated open circuit voltage reaches 2.93 V,which is much higher than those poled at lower electric fields(70 MV/m:1.41 V;90 MV/m:2.11 V).Furthermore,the addition of CoFe_(2)O_(4)also influences the piezoelectricity dramatically.In the samples containing 0.15 wt%CoFe_(2)O_(4),the calibrated open circuit voltage increases to the maximum value of 3.57 V.Meanwhile,the relative fraction of theβ-phase and the crystallinity degree are 99%and 48%,respectively.The effects of CoFe_(2)O_(4)nanoparticles on initial crystallization,uniaxial stretching and high electric field poling are investigated by XRD,FTIR and DSC.展开更多
The isolation of graphene and subsequent studies showed that obtaining atomically thin crystalline sheets was feasible and possessed extraordinary properties.This result opened the door to an entirely new family of ma...The isolation of graphene and subsequent studies showed that obtaining atomically thin crystalline sheets was feasible and possessed extraordinary properties.This result opened the door to an entirely new family of materials known as two-dimensional or 2D materials.Research in this field is intense:the emergence of new 2D materials,the properties of their combinations and the ability of graphene to reinvent itself,showing novel and exciting properties,make it likely that this field will continue to be one of the leading topics of materials science and condensed matter physics.展开更多
Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,huma...Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.展开更多
Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high...Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field.展开更多
Article Article types Articles commonly fall into one of three main categories: Fulllength articles, Review articles and Short communications.Full-length articles are original, unpublished primary research. Extensions...Article Article types Articles commonly fall into one of three main categories: Fulllength articles, Review articles and Short communications.Full-length articles are original, unpublished primary research. Extensions of work that has been published previously in short form such as a Communication are usually acceptable.Short communications must contain original and highly significant work whose high novelty warrants rapid publication.展开更多
Conductive polymer composites(CPCs)strain sensors exhibit promising applications in flexible electronics,people’s health monitoring,etc.It remains a big challenge to develop a simple and cost-effective method to prep...Conductive polymer composites(CPCs)strain sensors exhibit promising applications in flexible electronics,people’s health monitoring,etc.It remains a big challenge to develop a simple and cost-effective method to prepare CPCs with high conductivity,corrosion resistance,strong interfacial adhesion and high sensitivity.Here,we propose a facile“drop-casting and fluorination”strategy to fabricate superhydrophobic and highly electrically conductive coating by Ag precursor adsorption onto a commercially available elastic tape,subsequent chemical reduction and final fluorination.The Ag nanoparticles could not only construct the electrically conductive network but also greatly enhance the surface roughness.The contact angle and electrical conductivity of the coating can reach as high as 156°and 126 S/cm,respectively.When used for strain sensing,the superhydrophobic and conductive coating shows a high gauger factor(up to 7631 with the strain from 44%to 50%)and outstanding recyclability.The strain sensor could monitor different body joint motions with the stable and reliable sensing signals even after long time treatment in a corrosive solution.展开更多
Atomic layer deposition(ALD)can synthesise materials with atomic-scale precision.The ability to tune the material composition,film thickness with excellent conformality,allow low-temperature processing,and in-situ rea...Atomic layer deposition(ALD)can synthesise materials with atomic-scale precision.The ability to tune the material composition,film thickness with excellent conformality,allow low-temperature processing,and in-situ real-time monitoring makes this technique very appealing for a wide range of applications.In this review,we focus on the application of ALD layers in a wide range of solar cells.We focus on industrial silicon,thin film,organic and quantum dot solar cells.It is shown that the merits of ALD have already been exploited in a wide range of solar cells at the lab scale and that ALD is already applied in high-volume manufacturing of silicon solar cells.展开更多
The surface of copper-chromium alloy was processed by Al-Si-Ni multi-permeation and friction stir processing,and the microstructure and mechanical properties of the surface layer were tested by scanning electron micro...The surface of copper-chromium alloy was processed by Al-Si-Ni multi-permeation and friction stir processing,and the microstructure and mechanical properties of the surface layer were tested by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),microhardness tester and friction testing machine.The results show that Al,Si and Ni elements are fully permeated into the surface of copper-chromium alloy after multielement co-infiltration and friction stir processing.In the observation of the microstructures,we found that the reticular structure is fragmented and distributed in the stir zone region.Microstructure becomes finer and grains refinement.The micro hardness of the copper-chromium alloy increased to 129 HV,44.9%higher than that of the original matrix.The main reasons of microhardness enhancement are solid solution strengthening,fine grains strengthening and dispersion strengthening.The friction test results show that the friction coefficient is basically stable at 0.69 and the wear mass is only 0.0017 g after 10 min of friction test.The improvement of wear resistance was attributed to the increase of microhardness of the alloy surface.展开更多
Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline wa...Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline water electrolyzers and emerging anion exchange membrane(AEM)electrolyzers.Here we present a facile electrochemical modification strategy for the synthesis of bi-component Co–Mo_((18%))/A-Co(OH)_(2)catalyst toward efficient HER catalysis in alkaline media.Porous Co–Mo alloys with adjustable Mo/Co atomic ratio are first prepared by H2-assisted cathodic electrodeposition.By virtue of the appropriate electronic structure and hydrogen binding energy,Co–Mo_((18%))is the most HER active among the alloys and is further activated by a constant-current electrochemical modification process.Physical characterizations reveal the formation of amorphous Co(OH)_(2)nanoparticles on the surface.Electrokinetic analysis combined with theoretical calculations reveal that the in-situ formed Co(OH)_(2)can efficiently promote the water dissociation,resulting in accelerated Volmer-step kinetics.As a result,the Co–Mo_((18%))/A-Co(OH)_(2)simultaneously achieves the optimization of the two factors dominating alkaline HER activity,i.e.,water dissociation and hydrogen adsorption/desorption via the bifunctional synergy of the bi-components.The high HER activity(η10 of 47 mV at 10 mA cm^(-2))of Co–Mo_((18%))/A-Co(OH)_(2)is close to benchmark Pt/C catalyst and comparable or superior to the most active non-noble metal catalysts.展开更多
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ...Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.展开更多
Article Article types Articles commonly fall into one of three main categories:Full-length articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of...Article Article types Articles commonly fall into one of three main categories:Full-length articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of work that has been published previously in short form such as a Communication are usually acceptable.展开更多
Article Article types Articles commonly fall into one of three main categories:Fulllength articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of ...Article Article types Articles commonly fall into one of three main categories:Fulllength articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of work that has been published previously in short form such as a Communication are usually acceptable.Short communications must contain original and highly significant work whose high novelty warrants rapid publication.展开更多
The work reports the synthesis of nickel nanoparticles supported on thermally reduced graphene oxides(rGO)in the ionic liquid[BMIm][NTf_(2)]through microwave decomposition reaction.Ni@rGO with the polymer poly(3,4-eth...The work reports the synthesis of nickel nanoparticles supported on thermally reduced graphene oxides(rGO)in the ionic liquid[BMIm][NTf_(2)]through microwave decomposition reaction.Ni@rGO with the polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)as binder was positively tested for its response towards the oxidizing gas nitrogen dioxide(10 ppm in air),the reducing gas carbon monoxide(3000 ppm in N_(2))and the volatile organic compound(VOC)acetone(35,000 ppm in air).The results from different gases were compared at different temperatures with the best results for NO_(2) at 200℃.Additionally,it is shown for NO_(2) gas that the Ni@rGO-PEDOT:PSS polymer composite gives better results than the rGO-PEDOT:PSS polymer composite.After the heat treatment the oxidation state of pure nickel nanoparticles were confirmed by powder diffraction.展开更多
In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-lik...In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-like)were prepared.Characterization of the NiO catalysts was carried out using SEM,BET,XRD and electrochemical investigation techniques.The results indicated that the nitrogen reduction reaction(NRR)is strictly dependent on the morphology of the NiO catalysts,as the hollow spherical NiO showed the best electrochemical NRR performance of NH3 yield rate(3.21μg h^-1 mg^-1 cat.,4.1910^-11 mol cm^-2 s^-1)and Faradaic efficiency(1.37%),which was higher than the yields and efficiencies of the rod-NiO(1.8μg h^-1 mg^-1 cat.,3.2410^-11 mol cm^-2 s^-1,1.17%),sea urchin-NiO(1.66μg h^-1 mg^-1 cat.,2.4410^-11 mol cm^-2 s^-1,1.08%)and cubic block-NiO(1.32μg h^-1 mg^-1 cat.,2.1410^-11 mol cm^-2 s^-1,0.81%),respectively.These results match the order of the specific surface area of the NiO samples,with hollow spherical(113.91 m^2 g^-1)>rod-NiO(55.12 m^2 g^-1)sea urchin-NiO(55.29 m^2 g^-1)>cubic block-NiO(38.57 m^2 g^-1).This correlation can be attributed to the fact that large specific surface areas can provide more active sites for electrocatalysis.This work demonstrates the effect of the morphology of the NiO catalysts on its electrochemical NRR properties,which could offer some opportunity for the preparation of new electrode materials with improved electrocatalytic properties.展开更多
基金supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park (Project HZQBKCZYB-2020030)National Key R&D Program of China (Project 2017YFA0204403)+2 种基金the National Natural Science Foundation of China (Project 51590892)the Major Program of Changsha Science and Technology (Project kh2003023)the Innovation and Technology Commission of HKSAR through Hong Kong Branch of National Precious Metals Material Engineering Research Centre,and the City University of Hong Kong (Project 9667207)。
文摘Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).
基金The authors acknowledge the National Natural Science Foundation of China(NSFC 91834301,21808046 and 21908037)Anhui Provincial Science and Technology Department Foundation(201903a05020021 and 202003a05020046)for funding support.
文摘Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical water splitting.Herein,we report the fabrication of heterostructured P-CoMoO_(4)@NiCoP on a Ni foam substrate through interface engineering,by adjusting its composition and architecture.Benefitting from the tailored electronic structure and exposed active sites,the heterostructured P-CoMoO_(4)@NiCoP/NF arrays can be coordinated to boost the overall water splitting.In addition,the superhydrophilic and superaerophobic properties of P-CoMoO_(4)@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process.The heterostructured PCoMoO_(4)@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 mV at 10 mA cm^(-2) for HER and 252 mV at 100 mA cm^(-2) for OER.Only 1.62 V potential is required to deliver 20 mA cm^(-2) in a two-electrode electrolysis system,providing a decent overall water splitting performance.The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity.
基金supported by the Key Research and Development Plan of Shaanxi Province (2023-GHZD-12)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures (SVL2021-KF-12)+1 种基金Fundamental Research Funds for the Central Universities (G2020KY05112)the 111 Project (BP0719007)
文摘Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.
文摘The isolation of single layer graphene and its outstanding physical,chemical and mechanical properties has paved the way for both exploring the existing layered materials and developing novel twodimensional(2D)nanomaterials.The science behind 2D nanomaterials is beautiful and closely related to the dimensionality effect.In the past few years,tremendous efforts have been made investigating the material’s preparation,characterizing its fundamental properties and demonstrating its technological applications.In particular,the emergence of 2D organic semiconductors and 2D non-layered organic-inorganic hybrid perovskites have led to new opportunities for cost-effective electronics and green energy applications.
基金supported by National Natural Science Foundation of China(No.51703015)Fundamental Research Funds for the Central Universities(No.2020CDJQY-A008).
文摘High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)and ferromagnetic cobalt ferrite(CoFe_(2)O_(4))(0.00 wt%to 0.2 wt%)are prepared by a solution casting method accompanied by uniaxial stretching and high electric field poling.The decisive effect of the poling electric field on the power generating capability was confirmed by the experiments.For pure PVDF-HFP films,when the maximum electric field Emax is 120 MV/m,the calibrated open circuit voltage reaches 2.93 V,which is much higher than those poled at lower electric fields(70 MV/m:1.41 V;90 MV/m:2.11 V).Furthermore,the addition of CoFe_(2)O_(4)also influences the piezoelectricity dramatically.In the samples containing 0.15 wt%CoFe_(2)O_(4),the calibrated open circuit voltage increases to the maximum value of 3.57 V.Meanwhile,the relative fraction of theβ-phase and the crystallinity degree are 99%and 48%,respectively.The effects of CoFe_(2)O_(4)nanoparticles on initial crystallization,uniaxial stretching and high electric field poling are investigated by XRD,FTIR and DSC.
文摘The isolation of graphene and subsequent studies showed that obtaining atomically thin crystalline sheets was feasible and possessed extraordinary properties.This result opened the door to an entirely new family of materials known as two-dimensional or 2D materials.Research in this field is intense:the emergence of new 2D materials,the properties of their combinations and the ability of graphene to reinvent itself,showing novel and exciting properties,make it likely that this field will continue to be one of the leading topics of materials science and condensed matter physics.
基金financially supported by National Natural Science Foundation of China(Grant No.52073071,51803041)Natural Science Funding for Excellent Young Scholar of Heilongjiang Province(YQ2022E021,L.Wang)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.DZJJ.2023056)the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute(No.JS220407)the financial support from the Spanish Ministry of Economy and the Canary Islands program Vieray Clavijo Senior(Ref.2023/00001156)。
文摘Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.
基金supported by National Natural Science Foundation of China(22090031,21922501,22109004)China Postdoctoral Science Foundation(2021M690319)。
文摘Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field.
文摘Article Article types Articles commonly fall into one of three main categories: Fulllength articles, Review articles and Short communications.Full-length articles are original, unpublished primary research. Extensions of work that has been published previously in short form such as a Communication are usually acceptable.Short communications must contain original and highly significant work whose high novelty warrants rapid publication.
基金Natural Science Foundation of China(No.51873178)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(No.sklpme2020-4-03)+1 种基金Qing Lan Project of Yangzhou University and Jiangsu Province,High-end Talent Project of Yangzhou University,the Priority Academic Program Development of Jiangsu Higher Education Institutions,Postgraduate Research&Practice Innovation Program of Jiangsu province(No.KYCX18_2364,No.KYCX20_2977)Outstanding Doctoral Dissertation Fund of Yangzhou University.
文摘Conductive polymer composites(CPCs)strain sensors exhibit promising applications in flexible electronics,people’s health monitoring,etc.It remains a big challenge to develop a simple and cost-effective method to prepare CPCs with high conductivity,corrosion resistance,strong interfacial adhesion and high sensitivity.Here,we propose a facile“drop-casting and fluorination”strategy to fabricate superhydrophobic and highly electrically conductive coating by Ag precursor adsorption onto a commercially available elastic tape,subsequent chemical reduction and final fluorination.The Ag nanoparticles could not only construct the electrically conductive network but also greatly enhance the surface roughness.The contact angle and electrical conductivity of the coating can reach as high as 156°and 126 S/cm,respectively.When used for strain sensing,the superhydrophobic and conductive coating shows a high gauger factor(up to 7631 with the strain from 44%to 50%)and outstanding recyclability.The strain sensor could monitor different body joint motions with the stable and reliable sensing signals even after long time treatment in a corrosive solution.
基金Australian Renewable Energy Agency(ARENA)as part of ARENA's Research and Development Program–Solar PV Research(Grant 2017/RND007)the Qatar National Research Fund(a member of Qatar Foundation,NPRP Grant#NPRP9-021-009).
文摘Atomic layer deposition(ALD)can synthesise materials with atomic-scale precision.The ability to tune the material composition,film thickness with excellent conformality,allow low-temperature processing,and in-situ real-time monitoring makes this technique very appealing for a wide range of applications.In this review,we focus on the application of ALD layers in a wide range of solar cells.We focus on industrial silicon,thin film,organic and quantum dot solar cells.It is shown that the merits of ALD have already been exploited in a wide range of solar cells at the lab scale and that ALD is already applied in high-volume manufacturing of silicon solar cells.
基金financial support from the National Natural Science Foundation of China (No. 51571214)Science Project of Shenzhen (JCYJ20180508151903646)
文摘The surface of copper-chromium alloy was processed by Al-Si-Ni multi-permeation and friction stir processing,and the microstructure and mechanical properties of the surface layer were tested by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),microhardness tester and friction testing machine.The results show that Al,Si and Ni elements are fully permeated into the surface of copper-chromium alloy after multielement co-infiltration and friction stir processing.In the observation of the microstructures,we found that the reticular structure is fragmented and distributed in the stir zone region.Microstructure becomes finer and grains refinement.The micro hardness of the copper-chromium alloy increased to 129 HV,44.9%higher than that of the original matrix.The main reasons of microhardness enhancement are solid solution strengthening,fine grains strengthening and dispersion strengthening.The friction test results show that the friction coefficient is basically stable at 0.69 and the wear mass is only 0.0017 g after 10 min of friction test.The improvement of wear resistance was attributed to the increase of microhardness of the alloy surface.
基金supported by the National Natural Science Foundation of China(No.51771037)Low Carbon Energy Research Funding Initiative(No.SC22/22-71151E).
文摘Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline water electrolyzers and emerging anion exchange membrane(AEM)electrolyzers.Here we present a facile electrochemical modification strategy for the synthesis of bi-component Co–Mo_((18%))/A-Co(OH)_(2)catalyst toward efficient HER catalysis in alkaline media.Porous Co–Mo alloys with adjustable Mo/Co atomic ratio are first prepared by H2-assisted cathodic electrodeposition.By virtue of the appropriate electronic structure and hydrogen binding energy,Co–Mo_((18%))is the most HER active among the alloys and is further activated by a constant-current electrochemical modification process.Physical characterizations reveal the formation of amorphous Co(OH)_(2)nanoparticles on the surface.Electrokinetic analysis combined with theoretical calculations reveal that the in-situ formed Co(OH)_(2)can efficiently promote the water dissociation,resulting in accelerated Volmer-step kinetics.As a result,the Co–Mo_((18%))/A-Co(OH)_(2)simultaneously achieves the optimization of the two factors dominating alkaline HER activity,i.e.,water dissociation and hydrogen adsorption/desorption via the bifunctional synergy of the bi-components.The high HER activity(η10 of 47 mV at 10 mA cm^(-2))of Co–Mo_((18%))/A-Co(OH)_(2)is close to benchmark Pt/C catalyst and comparable or superior to the most active non-noble metal catalysts.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A2C1008380)Nano Material Technology Development Program[NRF-2015M3A7B6027970]+1 种基金the Chey Institute for Advanced Studies'International Scholar Exchange Fellowship for the academic year of 2021-2022supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20215710100170).
文摘Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.
文摘Article Article types Articles commonly fall into one of three main categories:Full-length articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of work that has been published previously in short form such as a Communication are usually acceptable.
文摘Article Article types Articles commonly fall into one of three main categories:Fulllength articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of work that has been published previously in short form such as a Communication are usually acceptable.Short communications must contain original and highly significant work whose high novelty warrants rapid publication.
文摘The work reports the synthesis of nickel nanoparticles supported on thermally reduced graphene oxides(rGO)in the ionic liquid[BMIm][NTf_(2)]through microwave decomposition reaction.Ni@rGO with the polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)as binder was positively tested for its response towards the oxidizing gas nitrogen dioxide(10 ppm in air),the reducing gas carbon monoxide(3000 ppm in N_(2))and the volatile organic compound(VOC)acetone(35,000 ppm in air).The results from different gases were compared at different temperatures with the best results for NO_(2) at 200℃.Additionally,it is shown for NO_(2) gas that the Ni@rGO-PEDOT:PSS polymer composite gives better results than the rGO-PEDOT:PSS polymer composite.After the heat treatment the oxidation state of pure nickel nanoparticles were confirmed by powder diffraction.
基金The project was supported by the National Natural Science Foundation of China(NSFC,21703161).We thank Prof.Xingmao Jiang at Wuhan Institute of Technology for his assistance in collecting N2 adsorption-desorption isotherms data.
文摘In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-like)were prepared.Characterization of the NiO catalysts was carried out using SEM,BET,XRD and electrochemical investigation techniques.The results indicated that the nitrogen reduction reaction(NRR)is strictly dependent on the morphology of the NiO catalysts,as the hollow spherical NiO showed the best electrochemical NRR performance of NH3 yield rate(3.21μg h^-1 mg^-1 cat.,4.1910^-11 mol cm^-2 s^-1)and Faradaic efficiency(1.37%),which was higher than the yields and efficiencies of the rod-NiO(1.8μg h^-1 mg^-1 cat.,3.2410^-11 mol cm^-2 s^-1,1.17%),sea urchin-NiO(1.66μg h^-1 mg^-1 cat.,2.4410^-11 mol cm^-2 s^-1,1.08%)and cubic block-NiO(1.32μg h^-1 mg^-1 cat.,2.1410^-11 mol cm^-2 s^-1,0.81%),respectively.These results match the order of the specific surface area of the NiO samples,with hollow spherical(113.91 m^2 g^-1)>rod-NiO(55.12 m^2 g^-1)sea urchin-NiO(55.29 m^2 g^-1)>cubic block-NiO(38.57 m^2 g^-1).This correlation can be attributed to the fact that large specific surface areas can provide more active sites for electrocatalysis.This work demonstrates the effect of the morphology of the NiO catalysts on its electrochemical NRR properties,which could offer some opportunity for the preparation of new electrode materials with improved electrocatalytic properties.