A stationary loudness model has been built up on the basis of the former ISO 226: 1987 concerning equal-loudness-level contours. The loudness and loudness level expressions derived in the study include the same parame...A stationary loudness model has been built up on the basis of the former ISO 226: 1987 concerning equal-loudness-level contours. The loudness and loudness level expressions derived in the study include the same parameters as used when determining the equal-loudness-level contours of the former ISO standard. However, as an additional main idea, a loudness summation rule has been proposed in the study. Moreover, the loudness expressions have been normalised to give the same values for people who have a similar sense of hearing. It has also been found that the loudness expressions include basically two different weightings. The first weighting is a conservative frequency weighting in the domain of sound pressure level, and the second weighting consists of coefficients applied to the weighted sound pressure levels. The latter have the greatest effect on the very low-frequency range. Finally, the paper includes a new way to use the A-weighting which takes into account the compressed character of the equal-loudness-level contours at the low frequency range. This method remarkably transforms the character of the A-weighting as a measure for low-frequency environmental noise.展开更多
It is shown that the estimation of nonlinear distortions in the various circuits based on the measurement of the ratio of the dispersion and correlation functions does not depend on the level of additive noise acting ...It is shown that the estimation of nonlinear distortions in the various circuits based on the measurement of the ratio of the dispersion and correlation functions does not depend on the level of additive noise acting on the input (or output) of nonlinear circuit. The proposed theoretical method is confirmed by experimental measurements.展开更多
The Room Acoustic Rendering Equation introduced in [1] formalizes a variety of room acoustics modeling algorithms. One key concept in the equation is the Acoustic Bidirectional Reflectance Distribution Function (A-BRD...The Room Acoustic Rendering Equation introduced in [1] formalizes a variety of room acoustics modeling algorithms. One key concept in the equation is the Acoustic Bidirectional Reflectance Distribution Function (A-BRDF) which is the term that models sound reflections. In this paper, we present a method to compute analytically the A-BRDF in cases with diffuse reflections parametrized by random variables. As an example, analytical A-BRDFs are obtained for the Vector Based Scattering Model, and are validated against numerical Monte Carlo experiments. The analytical computation of A-BRDFs can be added to a standard acoustic ray tracing engine to obtain valuable data from each ray collision thus reducing significantly the computational cost of generating impulse responses.展开更多
The given work studies the reason of the change of a superfluous current near crystallization temperature of an amorphous αPbSb metal alloy and at the same time founds out the influence of ultrasonic processing (USP)...The given work studies the reason of the change of a superfluous current near crystallization temperature of an amorphous αPbSb metal alloy and at the same time founds out the influence of ultrasonic processing (USP) on the properties of αPbSb-nSi solar elements (SE), made by Shottki diodes technology (ShD) with a metal alloy. It is found that occurrence of a superfluous current αPbSb-nSi ShD under the influence of thermoannealing is connected with changes of structure of an amorphous film of metal at transition in a polycrystalline condition. VAC damaged αPbSb-nSi Sh Dare very sensitive to annealing time. Eventually, even at room temperature, level of a superfluous current decreases, i.e. “the wound” put by mechanical damage sort of heals, restoration process occurs the faster, the higher the annealing temperature is. Function of γt annealing parameters changes in an interval and the influence USP on photo-electric properties αPbSb-nSi SE depends on the chosen UIT mode.展开更多
We introduce novel methods to determine optimum detection thresholds for the Progressive Multi-Channel Correlation (PMCC) algorithm used by the International Data Centre (IDC) to perform infrasound and seismic station...We introduce novel methods to determine optimum detection thresholds for the Progressive Multi-Channel Correlation (PMCC) algorithm used by the International Data Centre (IDC) to perform infrasound and seismic station-level nuclear-event detection. Receiver Operating Characteristic (ROC) curve analysis is used with real ground truth data to determine the trade-off between the probability of detection (PD) and the false alarm rate (FAR) at various detection thresholds. Further, statistical detection theory via maximum a posteriori and Bayes cost approaches is used to determine station-level optimum “family” size thresholds before detections should be considered for network-level processing. These threshold-determining methods are extensible for family-characterizing statistics other than “size,” such as a family’s collective F-statistic or signal-to-noise ratio (SNR). Therefore, the reliability of analysts’ decisions as to whether families should be preserved for network-level processing can only benefit from access to multiple, independent, optimum decision thresholds based upon size, F-statistic, SNR, etc.展开更多
Two additional solutions of new shear-horizontal surface acoustic waves (SH-SAWs) are found in this theoretical report. The SH-SAW propagation is managed by the free surface of a solid when it has a direct contact wit...Two additional solutions of new shear-horizontal surface acoustic waves (SH-SAWs) are found in this theoretical report. The SH-SAW propagation is managed by the free surface of a solid when it has a direct contact with a vacuum. The studied smart solid represents the transversely isotropic piezoelectromagnetic (magnetoelectroelastic or MEE) medium that pertains to crystal symmetry class 6 mm. In the developed theoretical treatment, the solid surface must be mechanically free. Also, the magnetic and electrical boundary conditions at the common interface between a vacuum and the solid surface read: the magnetic and electrical displacements must continue and the same for the magnetic and electrical potentials. To obtain these two new SH-SAW solutions, the natural coupling mechanisms such as eμ-hα and εμ-α2 present in the coefficient of the magnetoelectromechanical coupling (CMEMC) can be exploited. Based on the obtained theoretical results, it is possible that a set of technical devices (filters, sensors, delay lines, lab-on-a-chip, etc.) based on smart MEE media can be developed. It is also blatant that the obtained theoretical results can be helpful for the further theoretical and experimental studies on the propagation of the plate SH-waves and the interfacial SH-waves in the MEE (composite) media. The most important issue can be the influence of the magnetoelectric effect on the SH-wave propagation. One must also be familiar with the fact that the surface, interfacial, and plate SH-waves can frequently represent a common tool for nondestructive testing and evaluation of surfaces, interfaces, and plates, respectively.展开更多
Information on hearing thresholds is not always reliable as differences in these thresholds have been described even for the same species. This may partially be due to different methods used by different labs. A frequ...Information on hearing thresholds is not always reliable as differences in these thresholds have been described even for the same species. This may partially be due to different methods used by different labs. A frequently used approach to obtain an estimate of hearing threshold is the electrophysiological recording of auditory brainstem responses (ABR). They are usually recorded under deep anesthesia and represent the auditory evoked far-field potentials at various levels in the central auditory pathway. Alternatively, several behavioral approaches are employed. These commonly use operant or classical conditioning to determine hearing thresholds. A potential disadvantage of these methods is that any sound conditioning may in principle alter auditory perception and therefore auditory thresholds. To exclude this type of methodological bias a prepulse inhibition (PPI) paradigm can be used where an audiogram can be determined without any kind of pre-training. Here we compare the threshold estimates obtained by two different ABR and PPI measurements where stimuli are presented in different contexts, either randomly or non-randomly, to test for a possible effect of auditory sensitization. In addition we test the effect of a frequency specific acoustic trauma on the audiograms obtained with both methods. In general we find behaviorally determined audiograms to be significantly lower in absolute thresh- old compared to ABR measurements. Furthermore non-randomized presentation context of the stimuli generally results in audiograms with 10 to 15 dB lower thresholds than pseudo-randomized presentation. Finally, the amount of threshold loss induced by acoustic trauma is similar for all methods tested.展开更多
This work deals with the study of the reflection and transmission properties of plane periodic structures composed of N periods (1 ≤ N ≤ 3) in the MHz frequency range. The period consists of two bounded plates prese...This work deals with the study of the reflection and transmission properties of plane periodic structures composed of N periods (1 ≤ N ≤ 3) in the MHz frequency range. The period consists of two bounded plates presenting a high acoustic impedance contrast one of which is in aluminum, the other is in polyethylene. The longitudinal and transversal attenuations are considered in polyethylene and neglected in aluminum. We take into account the case of emerging holes in the polyethylene layer. Simulations are based on the stiffness matrix method (SMM) developed by Rokhlin. When attenuation is considered in polyethylene, the reflection coefficients are different depending on the insonification side. The comparison of results without or with holes configurations are performed and showed that throughout holes allow the rapid observation of forbidden bands. The attenuation of the whole multilayer is also determined.展开更多
Variation of ocean environmental parameters is important to sound ray propagation. This article studies the problem of sound ray propagation in seawater by BELLHOP ray model. The sensitivities of sound ray propagation...Variation of ocean environmental parameters is important to sound ray propagation. This article studies the problem of sound ray propagation in seawater by BELLHOP ray model. The sensitivities of sound ray propagation to the variations of seabed topography and depth of sound source by simulation. The results show that the depth variation of sound source is the main cause for emerging and disappearing of surface sound channel, accumulation area and deep sound channel. The deviation of sound ray propagation is in accordance with seabed topography change.展开更多
In nuclear reactors cooled by liquid metals, ultrasound is the only type of field that allows obtaining images of the reactor cores and diagnostics of the integrity of the fuel assemblies. The article discusses the fe...In nuclear reactors cooled by liquid metals, ultrasound is the only type of field that allows obtaining images of the reactor cores and diagnostics of the integrity of the fuel assemblies. The article discusses the features of the practical realization of ultrasonic imaging systems based on phased arrays and offers an alternative solution of imaging on the basis of the acoustic lenses of refractive and diffraction types. Using lenses eliminates many of the technical and technological problems associated with the development of multi-element phased arrays. It is shown that lens systems allow using traditional methods of transformation of acoustic fields into the visible images by 2D piezo matrix and a more promising way of acoustooptical transformation based on coherent optical interferometry.展开更多
In audio classification applications, features extracted from the frequency domain representation of signals are typically focused on the magnitude spectral content, while the phase spectral content is ignored. The co...In audio classification applications, features extracted from the frequency domain representation of signals are typically focused on the magnitude spectral content, while the phase spectral content is ignored. The conventional Fourier Phase Spectrum is a highly discontinuous function;thus, it is not appropriate for feature extraction for classification applications, where function continuity is required. In this work, the sources of phase spectral discontinuities are detected, categorized and compensated, resulting in a phase spectrum with significantly reduced discontinuities. The Hartley Phase Spectrum, introduced as an alternative to the conventional Fourier Phase Spectrum, encapsulates the phase content of the signal more efficiently compared with its Fourier counterpart because, among its other properties, it does not suffer from the phase ‘wrapping ambiguities’ introduced due to the inverse tangent function employed in the Fourier Phase Spectrum computation. In the proposed feature extraction method, statistical features extracted from the Hartley Phase Spectrum are combined with statistical features extracted from the magnitude related spectrum of the signals. The experimental results show that the classification score is higher in case the magnitude and the phase related features are combined, as compared with the case where only magnitude features are used.展开更多
Propagation of Love waves in a transversely isotropic poroelastic layer bounded between two compressible viscous liquids is presented. The equations of motion in a transversely isotropic poroelastic solid are formulat...Propagation of Love waves in a transversely isotropic poroelastic layer bounded between two compressible viscous liquids is presented. The equations of motion in a transversely isotropic poroelastic solid are formulated in the framework of Biot’s theory. A closed-form solution for the propagation of Love waves is obtained in a transversely isotropic poroelastic layer. The complex frequency equation for phase velocity and attenuation of Love waves is derived for a transversely isotropic poroelastic layer when it is bounded between two viscous liquids and the results are compared with that of the poroelastic layer. The effect of viscous liquids on the propagation of Love waves is discussed. It is observed that the presence of viscous liquids decreases phase velocity in both transversely isotropic poroelastic layer and poroelastic layer. Results related to the case without viscous liquids have been compared with some of the earlier results and comparison shows good agreement.展开更多
For acoustic applications such as theaters, cinema halls, auditoriums the data on acoustic properties i.e. sound absorption coefficient and sound transmission loss are required to evaluate the acoustic behavior of pan...For acoustic applications such as theaters, cinema halls, auditoriums the data on acoustic properties i.e. sound absorption coefficient and sound transmission loss are required to evaluate the acoustic behavior of panel products and to facilitate the necessary design computations. Fibre boards are widely used in private and commercial buildings, but not much data are available on acoustic efficiency of fibre boards. The study was carried using acoustic pulse tester based on standing wave method for evaluating sound absorption coefficient. Wood fibre boards of different densities ranging from 200 to 800 kg/m3 were taken and their sound absorption coefficients at frequencies ranging from 125 Hz to 4000 Hz were evaluated in third octave band. Noise reduction coefficient of the samples was also computed. From the study, it is observed that low density fibre board possess high sound absorption coefficient and noise reduction coefficient when compared with high density fibre boards. It was seen that sound absorption coefficient increases with decrease in density and vice versa.展开更多
Generation and propagation of ultrasonic waves in single layer Graphene Nanoribbon is studied using semi-classical approach. When piezoelectric Graphene Nanoribbon (GNR) is exposed to time varying light beam, ultrason...Generation and propagation of ultrasonic waves in single layer Graphene Nanoribbon is studied using semi-classical approach. When piezoelectric Graphene Nanoribbon (GNR) is exposed to time varying light beam, ultrasonic waves are produced which propagate in the medium. At low frequencies, we observed oscillations of the ultrasonic observables, velocity change and attenuation which are characteristics of massless Dirac fermions in graphene. Exploiting this oscillatory behavior, we estimate graphene’s electronic mobility to be around . Propagating ultrasonic waves can be amplified, depending on the electric field amplitude. Specifically, amplification occurs when drift velocity exceeds sound velocity. This scheme can be employed for efficient ultrasonic amplifier device operation.展开更多
Dolphins produce various types of sounds in a wide range of frequencies. Characteristics of some sounds till now have not been correctly registered, that influenced on interpretation of their functions. Studying of th...Dolphins produce various types of sounds in a wide range of frequencies. Characteristics of some sounds till now have not been correctly registered, that influenced on interpretation of their functions. Studying of the characteristics and functions of dolphins’ acoustical signals is the purpose of the present work. In this work the acoustical signals of two dolphins (Tursiops truncatus) were registered by two-channel system in the frequencies band up to 200 kHz at quasi-stationary position of the dolphins. The dolphins along with whistles are producing the packs of coherent and non-coherent broadband pulses. The waveform and spectrum of coherent pulses was invariable within a pack, but considerably varies from a pack to a pack. The waveform of each non-coherent pulse vary from a pulse to a pulse in each pack, therefore their spectrum also vary from a pulse to a pulse and have many extremums in the band of 6 - 200 kHz. It is very likely that the non-coherent pulses play a part of phonemes of a dolphin spoken language and the probing signals of dolphin’s non- coherent sonar. The use possibility of the signals by dolphins for communication and orientation was considered, as the signals apparently are bimodal. Results of the work have significance for further studying of the dolphin’s sonar and spoken language.展开更多
The analysis of acoustic emissions generated by the interaction between the wind and a building’s facade of approximately 90 m high, located in the city of Montevideo, is presented. There is a helipad on the roof of ...The analysis of acoustic emissions generated by the interaction between the wind and a building’s facade of approximately 90 m high, located in the city of Montevideo, is presented. There is a helipad on the roof of the building. It is surrounded by a perforated plate (4.87 m high). Once the building was finished, complaints about the noise annoyance were expressed by some neighbors and working population in the building. Measurements of sound pressure levels on the site have been done. Also the possible acoustic sources were physically characterized. The noise source was identified: the acoustical emissions were associated with a phenomenon caused by wind speeds above 20 m/s from different directions, generating high sounds pressure levels in octave band of 4000 Hz, after its passage through the perforated plate on the contour of the roof. These studies were complemented by measurements in wind tunnel using a physical model built with the same plate installed in the building, which allowed verifying the results.展开更多
This paper contributes about the behaviour of Acoustic Emission (AE) signatures of implanted weld defects of SS 316L materials. Lack of penetration and lack of side fusion defects were implanted in weld bead region of...This paper contributes about the behaviour of Acoustic Emission (AE) signatures of implanted weld defects of SS 316L materials. Lack of penetration and lack of side fusion defects were implanted in weld bead region of the materials. Tungsten Inert Gas Welding (TIG) is adopted to weld the Stainless Steel (SS316L) nuclear grade materials. The material is fabricated with dimensions of 140 × 16 × 10 mm and AE signatures are studied under preload conditions. Mechanical Jig is fabricated to maintain constant load in concentrated weld region. When external load is applied on the weld region, the deformed specimen experiences acoustic emission signals form the weld defect region which are potential source of releasing stress energy. Liner Location Technique (LLT) is adopted for AE singal studies and the generated signal is processed by 2-channel USB—AE node and AE-WIN software. The tests are conducted on two different samples having each defect. A conventional NDT method i.e. X-ray Radiography is conducted on the samples to know the defect ranging and correlated with AE signatures. This study will be helpful to standardize the AE signals for different implanted weld defects of SS 316L materials and it is found that, the parameter “counts vs. amplitude” has given the widest distinction with respect to the type of defects.展开更多
This study is aimed at bringing out the salient aspects of urban noise and its study and control aspects, at different location of a metropolitans town. Field measurements at different points of times a day have also ...This study is aimed at bringing out the salient aspects of urban noise and its study and control aspects, at different location of a metropolitans town. Field measurements at different points of times a day have also been recorded at a number of high-traffic-intensity locations on main roads of towns. The data obtained are analyzed using SPSS package for calculation through ANOVA technique and the findings of these studies have been recorded. The variation of SPL considering the time of the day has been studied and illustrated through graphical plots. It shows that the peak early morning max sound pressure levels observed over the recommended limiting value. In some places, the low frequency noise predominates in the early morning hours, noise levels are significant among and within the 15 groups. The variation of sound pressure (Maximum, Minimum and L equivalent readings) levels as shown in the graphical plots, the Maximum and L equivalent levels exceeded the recommended noise level. Important conclusions of this work have been drawn subsequently.展开更多
This paper aims at describing the theoretical fundamentals of a reciprocity-based ultrasonic measurement model. This complete inspection simulation can be decomposed in two modeling steps, one dedicated to transducer ...This paper aims at describing the theoretical fundamentals of a reciprocity-based ultrasonic measurement model. This complete inspection simulation can be decomposed in two modeling steps, one dedicated to transducer radiation and one to flaw scattering and echo synthesis. The physical meaning of the input/output signals used in these two modeling tools is defined and the theoretical principles of both field calculation and echo computation models are then detailed. The influence on the modeling results of some changes in the simulated configuration (as the incident angle) or some input signal parameters (like the frequency) are studied: it is thus theoretically established that the simulated results can be compared between each other in terms of amplitude for numerous applications when changing some inspection parameters in the simulation but that a calibration for echo calculation is generally required.展开更多
The article considers peculiarities of underwater monitoring of moving objects in the shallow water areas, particularly seaports. These areas are characterized by a multitude of factors influencing the efficiency of d...The article considers peculiarities of underwater monitoring of moving objects in the shallow water areas, particularly seaports. These areas are characterized by a multitude of factors influencing the efficiency of detection. Nonstationarity conditions of sound propagation and specific interference caused by shipping are the major factors. The various algorithms for the space-time signal processing have been tested and some experimental results are presented. It has been shown that the use of clipped mode in conjunction with the correlation processing of wideband signals and subsequent speckle tracking allow realizing high efficiency of monitoring.展开更多
文摘A stationary loudness model has been built up on the basis of the former ISO 226: 1987 concerning equal-loudness-level contours. The loudness and loudness level expressions derived in the study include the same parameters as used when determining the equal-loudness-level contours of the former ISO standard. However, as an additional main idea, a loudness summation rule has been proposed in the study. Moreover, the loudness expressions have been normalised to give the same values for people who have a similar sense of hearing. It has also been found that the loudness expressions include basically two different weightings. The first weighting is a conservative frequency weighting in the domain of sound pressure level, and the second weighting consists of coefficients applied to the weighted sound pressure levels. The latter have the greatest effect on the very low-frequency range. Finally, the paper includes a new way to use the A-weighting which takes into account the compressed character of the equal-loudness-level contours at the low frequency range. This method remarkably transforms the character of the A-weighting as a measure for low-frequency environmental noise.
文摘It is shown that the estimation of nonlinear distortions in the various circuits based on the measurement of the ratio of the dispersion and correlation functions does not depend on the level of additive noise acting on the input (or output) of nonlinear circuit. The proposed theoretical method is confirmed by experimental measurements.
文摘The Room Acoustic Rendering Equation introduced in [1] formalizes a variety of room acoustics modeling algorithms. One key concept in the equation is the Acoustic Bidirectional Reflectance Distribution Function (A-BRDF) which is the term that models sound reflections. In this paper, we present a method to compute analytically the A-BRDF in cases with diffuse reflections parametrized by random variables. As an example, analytical A-BRDFs are obtained for the Vector Based Scattering Model, and are validated against numerical Monte Carlo experiments. The analytical computation of A-BRDFs can be added to a standard acoustic ray tracing engine to obtain valuable data from each ray collision thus reducing significantly the computational cost of generating impulse responses.
文摘The given work studies the reason of the change of a superfluous current near crystallization temperature of an amorphous αPbSb metal alloy and at the same time founds out the influence of ultrasonic processing (USP) on the properties of αPbSb-nSi solar elements (SE), made by Shottki diodes technology (ShD) with a metal alloy. It is found that occurrence of a superfluous current αPbSb-nSi ShD under the influence of thermoannealing is connected with changes of structure of an amorphous film of metal at transition in a polycrystalline condition. VAC damaged αPbSb-nSi Sh Dare very sensitive to annealing time. Eventually, even at room temperature, level of a superfluous current decreases, i.e. “the wound” put by mechanical damage sort of heals, restoration process occurs the faster, the higher the annealing temperature is. Function of γt annealing parameters changes in an interval and the influence USP on photo-electric properties αPbSb-nSi SE depends on the chosen UIT mode.
文摘We introduce novel methods to determine optimum detection thresholds for the Progressive Multi-Channel Correlation (PMCC) algorithm used by the International Data Centre (IDC) to perform infrasound and seismic station-level nuclear-event detection. Receiver Operating Characteristic (ROC) curve analysis is used with real ground truth data to determine the trade-off between the probability of detection (PD) and the false alarm rate (FAR) at various detection thresholds. Further, statistical detection theory via maximum a posteriori and Bayes cost approaches is used to determine station-level optimum “family” size thresholds before detections should be considered for network-level processing. These threshold-determining methods are extensible for family-characterizing statistics other than “size,” such as a family’s collective F-statistic or signal-to-noise ratio (SNR). Therefore, the reliability of analysts’ decisions as to whether families should be preserved for network-level processing can only benefit from access to multiple, independent, optimum decision thresholds based upon size, F-statistic, SNR, etc.
文摘Two additional solutions of new shear-horizontal surface acoustic waves (SH-SAWs) are found in this theoretical report. The SH-SAW propagation is managed by the free surface of a solid when it has a direct contact with a vacuum. The studied smart solid represents the transversely isotropic piezoelectromagnetic (magnetoelectroelastic or MEE) medium that pertains to crystal symmetry class 6 mm. In the developed theoretical treatment, the solid surface must be mechanically free. Also, the magnetic and electrical boundary conditions at the common interface between a vacuum and the solid surface read: the magnetic and electrical displacements must continue and the same for the magnetic and electrical potentials. To obtain these two new SH-SAW solutions, the natural coupling mechanisms such as eμ-hα and εμ-α2 present in the coefficient of the magnetoelectromechanical coupling (CMEMC) can be exploited. Based on the obtained theoretical results, it is possible that a set of technical devices (filters, sensors, delay lines, lab-on-a-chip, etc.) based on smart MEE media can be developed. It is also blatant that the obtained theoretical results can be helpful for the further theoretical and experimental studies on the propagation of the plate SH-waves and the interfacial SH-waves in the MEE (composite) media. The most important issue can be the influence of the magnetoelectric effect on the SH-wave propagation. One must also be familiar with the fact that the surface, interfacial, and plate SH-waves can frequently represent a common tool for nondestructive testing and evaluation of surfaces, interfaces, and plates, respectively.
文摘Information on hearing thresholds is not always reliable as differences in these thresholds have been described even for the same species. This may partially be due to different methods used by different labs. A frequently used approach to obtain an estimate of hearing threshold is the electrophysiological recording of auditory brainstem responses (ABR). They are usually recorded under deep anesthesia and represent the auditory evoked far-field potentials at various levels in the central auditory pathway. Alternatively, several behavioral approaches are employed. These commonly use operant or classical conditioning to determine hearing thresholds. A potential disadvantage of these methods is that any sound conditioning may in principle alter auditory perception and therefore auditory thresholds. To exclude this type of methodological bias a prepulse inhibition (PPI) paradigm can be used where an audiogram can be determined without any kind of pre-training. Here we compare the threshold estimates obtained by two different ABR and PPI measurements where stimuli are presented in different contexts, either randomly or non-randomly, to test for a possible effect of auditory sensitization. In addition we test the effect of a frequency specific acoustic trauma on the audiograms obtained with both methods. In general we find behaviorally determined audiograms to be significantly lower in absolute thresh- old compared to ABR measurements. Furthermore non-randomized presentation context of the stimuli generally results in audiograms with 10 to 15 dB lower thresholds than pseudo-randomized presentation. Finally, the amount of threshold loss induced by acoustic trauma is similar for all methods tested.
文摘This work deals with the study of the reflection and transmission properties of plane periodic structures composed of N periods (1 ≤ N ≤ 3) in the MHz frequency range. The period consists of two bounded plates presenting a high acoustic impedance contrast one of which is in aluminum, the other is in polyethylene. The longitudinal and transversal attenuations are considered in polyethylene and neglected in aluminum. We take into account the case of emerging holes in the polyethylene layer. Simulations are based on the stiffness matrix method (SMM) developed by Rokhlin. When attenuation is considered in polyethylene, the reflection coefficients are different depending on the insonification side. The comparison of results without or with holes configurations are performed and showed that throughout holes allow the rapid observation of forbidden bands. The attenuation of the whole multilayer is also determined.
文摘Variation of ocean environmental parameters is important to sound ray propagation. This article studies the problem of sound ray propagation in seawater by BELLHOP ray model. The sensitivities of sound ray propagation to the variations of seabed topography and depth of sound source by simulation. The results show that the depth variation of sound source is the main cause for emerging and disappearing of surface sound channel, accumulation area and deep sound channel. The deviation of sound ray propagation is in accordance with seabed topography change.
文摘In nuclear reactors cooled by liquid metals, ultrasound is the only type of field that allows obtaining images of the reactor cores and diagnostics of the integrity of the fuel assemblies. The article discusses the features of the practical realization of ultrasonic imaging systems based on phased arrays and offers an alternative solution of imaging on the basis of the acoustic lenses of refractive and diffraction types. Using lenses eliminates many of the technical and technological problems associated with the development of multi-element phased arrays. It is shown that lens systems allow using traditional methods of transformation of acoustic fields into the visible images by 2D piezo matrix and a more promising way of acoustooptical transformation based on coherent optical interferometry.
文摘In audio classification applications, features extracted from the frequency domain representation of signals are typically focused on the magnitude spectral content, while the phase spectral content is ignored. The conventional Fourier Phase Spectrum is a highly discontinuous function;thus, it is not appropriate for feature extraction for classification applications, where function continuity is required. In this work, the sources of phase spectral discontinuities are detected, categorized and compensated, resulting in a phase spectrum with significantly reduced discontinuities. The Hartley Phase Spectrum, introduced as an alternative to the conventional Fourier Phase Spectrum, encapsulates the phase content of the signal more efficiently compared with its Fourier counterpart because, among its other properties, it does not suffer from the phase ‘wrapping ambiguities’ introduced due to the inverse tangent function employed in the Fourier Phase Spectrum computation. In the proposed feature extraction method, statistical features extracted from the Hartley Phase Spectrum are combined with statistical features extracted from the magnitude related spectrum of the signals. The experimental results show that the classification score is higher in case the magnitude and the phase related features are combined, as compared with the case where only magnitude features are used.
文摘Propagation of Love waves in a transversely isotropic poroelastic layer bounded between two compressible viscous liquids is presented. The equations of motion in a transversely isotropic poroelastic solid are formulated in the framework of Biot’s theory. A closed-form solution for the propagation of Love waves is obtained in a transversely isotropic poroelastic layer. The complex frequency equation for phase velocity and attenuation of Love waves is derived for a transversely isotropic poroelastic layer when it is bounded between two viscous liquids and the results are compared with that of the poroelastic layer. The effect of viscous liquids on the propagation of Love waves is discussed. It is observed that the presence of viscous liquids decreases phase velocity in both transversely isotropic poroelastic layer and poroelastic layer. Results related to the case without viscous liquids have been compared with some of the earlier results and comparison shows good agreement.
文摘For acoustic applications such as theaters, cinema halls, auditoriums the data on acoustic properties i.e. sound absorption coefficient and sound transmission loss are required to evaluate the acoustic behavior of panel products and to facilitate the necessary design computations. Fibre boards are widely used in private and commercial buildings, but not much data are available on acoustic efficiency of fibre boards. The study was carried using acoustic pulse tester based on standing wave method for evaluating sound absorption coefficient. Wood fibre boards of different densities ranging from 200 to 800 kg/m3 were taken and their sound absorption coefficients at frequencies ranging from 125 Hz to 4000 Hz were evaluated in third octave band. Noise reduction coefficient of the samples was also computed. From the study, it is observed that low density fibre board possess high sound absorption coefficient and noise reduction coefficient when compared with high density fibre boards. It was seen that sound absorption coefficient increases with decrease in density and vice versa.
文摘Generation and propagation of ultrasonic waves in single layer Graphene Nanoribbon is studied using semi-classical approach. When piezoelectric Graphene Nanoribbon (GNR) is exposed to time varying light beam, ultrasonic waves are produced which propagate in the medium. At low frequencies, we observed oscillations of the ultrasonic observables, velocity change and attenuation which are characteristics of massless Dirac fermions in graphene. Exploiting this oscillatory behavior, we estimate graphene’s electronic mobility to be around . Propagating ultrasonic waves can be amplified, depending on the electric field amplitude. Specifically, amplification occurs when drift velocity exceeds sound velocity. This scheme can be employed for efficient ultrasonic amplifier device operation.
文摘Dolphins produce various types of sounds in a wide range of frequencies. Characteristics of some sounds till now have not been correctly registered, that influenced on interpretation of their functions. Studying of the characteristics and functions of dolphins’ acoustical signals is the purpose of the present work. In this work the acoustical signals of two dolphins (Tursiops truncatus) were registered by two-channel system in the frequencies band up to 200 kHz at quasi-stationary position of the dolphins. The dolphins along with whistles are producing the packs of coherent and non-coherent broadband pulses. The waveform and spectrum of coherent pulses was invariable within a pack, but considerably varies from a pack to a pack. The waveform of each non-coherent pulse vary from a pulse to a pulse in each pack, therefore their spectrum also vary from a pulse to a pulse and have many extremums in the band of 6 - 200 kHz. It is very likely that the non-coherent pulses play a part of phonemes of a dolphin spoken language and the probing signals of dolphin’s non- coherent sonar. The use possibility of the signals by dolphins for communication and orientation was considered, as the signals apparently are bimodal. Results of the work have significance for further studying of the dolphin’s sonar and spoken language.
文摘The analysis of acoustic emissions generated by the interaction between the wind and a building’s facade of approximately 90 m high, located in the city of Montevideo, is presented. There is a helipad on the roof of the building. It is surrounded by a perforated plate (4.87 m high). Once the building was finished, complaints about the noise annoyance were expressed by some neighbors and working population in the building. Measurements of sound pressure levels on the site have been done. Also the possible acoustic sources were physically characterized. The noise source was identified: the acoustical emissions were associated with a phenomenon caused by wind speeds above 20 m/s from different directions, generating high sounds pressure levels in octave band of 4000 Hz, after its passage through the perforated plate on the contour of the roof. These studies were complemented by measurements in wind tunnel using a physical model built with the same plate installed in the building, which allowed verifying the results.
文摘This paper contributes about the behaviour of Acoustic Emission (AE) signatures of implanted weld defects of SS 316L materials. Lack of penetration and lack of side fusion defects were implanted in weld bead region of the materials. Tungsten Inert Gas Welding (TIG) is adopted to weld the Stainless Steel (SS316L) nuclear grade materials. The material is fabricated with dimensions of 140 × 16 × 10 mm and AE signatures are studied under preload conditions. Mechanical Jig is fabricated to maintain constant load in concentrated weld region. When external load is applied on the weld region, the deformed specimen experiences acoustic emission signals form the weld defect region which are potential source of releasing stress energy. Liner Location Technique (LLT) is adopted for AE singal studies and the generated signal is processed by 2-channel USB—AE node and AE-WIN software. The tests are conducted on two different samples having each defect. A conventional NDT method i.e. X-ray Radiography is conducted on the samples to know the defect ranging and correlated with AE signatures. This study will be helpful to standardize the AE signals for different implanted weld defects of SS 316L materials and it is found that, the parameter “counts vs. amplitude” has given the widest distinction with respect to the type of defects.
文摘This study is aimed at bringing out the salient aspects of urban noise and its study and control aspects, at different location of a metropolitans town. Field measurements at different points of times a day have also been recorded at a number of high-traffic-intensity locations on main roads of towns. The data obtained are analyzed using SPSS package for calculation through ANOVA technique and the findings of these studies have been recorded. The variation of SPL considering the time of the day has been studied and illustrated through graphical plots. It shows that the peak early morning max sound pressure levels observed over the recommended limiting value. In some places, the low frequency noise predominates in the early morning hours, noise levels are significant among and within the 15 groups. The variation of sound pressure (Maximum, Minimum and L equivalent readings) levels as shown in the graphical plots, the Maximum and L equivalent levels exceeded the recommended noise level. Important conclusions of this work have been drawn subsequently.
文摘This paper aims at describing the theoretical fundamentals of a reciprocity-based ultrasonic measurement model. This complete inspection simulation can be decomposed in two modeling steps, one dedicated to transducer radiation and one to flaw scattering and echo synthesis. The physical meaning of the input/output signals used in these two modeling tools is defined and the theoretical principles of both field calculation and echo computation models are then detailed. The influence on the modeling results of some changes in the simulated configuration (as the incident angle) or some input signal parameters (like the frequency) are studied: it is thus theoretically established that the simulated results can be compared between each other in terms of amplitude for numerous applications when changing some inspection parameters in the simulation but that a calibration for echo calculation is generally required.
文摘The article considers peculiarities of underwater monitoring of moving objects in the shallow water areas, particularly seaports. These areas are characterized by a multitude of factors influencing the efficiency of detection. Nonstationarity conditions of sound propagation and specific interference caused by shipping are the major factors. The various algorithms for the space-time signal processing have been tested and some experimental results are presented. It has been shown that the use of clipped mode in conjunction with the correlation processing of wideband signals and subsequent speckle tracking allow realizing high efficiency of monitoring.