期刊文献+

《Open Journal of Fluid Dynamics》

作品数390被引量129H指数4
  • 主办单位美国科研出版社
  • 国际标准连续出版物号2165-3852
  • 出版周期季刊
共找到390篇文章
< 1 2 20 >
每页显示 20 50 100
Investigation on Combustion Characteristics in Channel with Obstacles for Internal Combustion Wave Rotor
1
作者 Jianzhong Li Li Yuan +2 位作者 Erlei Gong Wei Li Kaichen Zhang 《Open Journal of Fluid Dynamics》 2017年第2期194-204,共11页
This paper establishes a simplified test system for internal combustion wave rotor with a single channel and designs different intensifying combustion obstacles and arrangements. Moreover, this paper analyzes the inte... This paper establishes a simplified test system for internal combustion wave rotor with a single channel and designs different intensifying combustion obstacles and arrangements. Moreover, this paper analyzes the intensifying effect of obstacles on combustion process of the internal combustion wave rotor from the stable operation range, pressure gain and flame progression process perspective. The results show that the range of inlet velocity under stable operation of the internal combustion wave rotor narrows after the addition of obstacles, and the corresponding velocity values substantially reduce while the flame propagation speed can be improved by 2 - 4 times. At the rotation rate of 1500 rpm, the pressure gain increases significantly during the combustion process. These results provide technical supports for further research and application of the internal combustion wave rotor. 展开更多
关键词 INTERNAL COMBUSTION WAVE ROTOR Obstacles COMBUSTION CHARACTERISTICS
下载PDF
Numerical Calculation of Transient Flow of Polymer Foam in Porous Media
2
作者 Wei Zhao Haiqing Cui Keliang Wang 《Open Journal of Fluid Dynamics》 2015年第3期215-223,共9页
Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through... Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through the experiments of one dimension transient flow of HPAM (Hydrolytic Polyacrylamide) foam in the artificial sandstone core, the HPAM foam generation and coalescence coefficient of the mathematical model mentioned above are determined. The profiles of the liquid phase saturation, the pressure drop and the number density of one dimension transient flow of HPAM foam with the dimensionless time in artificial sandstone core are numerically calculated and analyzed by using the numerical calculation method. 展开更多
关键词 POLYMER Foam POROUS MEDIA TRANSIENT Flow MATHEMATICAL Model Numerical Calculation Method Experimental Research
下载PDF
Dufour Effects on Unsteady Hydromagnetic Radiative Fluid Flow past a Vertical Plate through Porous Medium
3
作者 Jagdish Prakash Avula Golla Vijaya Kumar +1 位作者 Desu Bhanumathi Sibyala Vijaya Kumar Varma 《Open Journal of Fluid Dynamics》 2012年第4期159-171,共13页
The objective of the present study is to investigate diffusion-thermo (Dufour effect) and radiation effects on unsteady MHD free convection flow past an impulsively started infinite vertical plate with variable temper... The objective of the present study is to investigate diffusion-thermo (Dufour effect) and radiation effects on unsteady MHD free convection flow past an impulsively started infinite vertical plate with variable temperature and uniform mass diffusion in the presence of transverse applied magnetic field through porous medium. At time t > 0, the plate is given an impulsive motion with constant velocity in the vertical upward direction against to the gravitational field. At the same time the plate temperature is raised linearly with time t and the level of concentration near the plate is raised to . A magnetic field of uniform strength is applied normal to the direction to the flow. The dimen- sionless governing equations are solved in closed form by Laplace-transform technique. The effect of flow parameters on velocity, temperature, concentration, the rate of heat transfer and the rate of mass transfer are shown through graphs. 展开更多
关键词 MHD Heat and Mass Transfer Diffusion-Thermo (Dufour Number) Vertical Plate Porous Medium
下载PDF
Validation of Dimensionless Parameters for Distinguishing between Homogeneous and Bubbling Fluidizations
4
作者 Kenya Kuwagi Atsuto Kogane +1 位作者 Yui Sasaki Hiroyuki Hirano 《Open Journal of Fluid Dynamics》 2021年第2期81-97,共17页
The difference between homogeneous and bubbling fluidization behaviors has been studied for the past 70 years, where several researchers have reported on the influence of interparticle forces in fluidization. Although... The difference between homogeneous and bubbling fluidization behaviors has been studied for the past 70 years, where several researchers have reported on the influence of interparticle forces in fluidization. Although interparticle forces such as van der Waals forces are evident in a real system, these forces are not the determinant in homogeneous fluidization, which can be simulated without any interparticle forces. In our previous study, the difference in fundamental mechanisms of the two fluidization states was analytically determined with a dimensionless gravity term, comprising the Reynolds number, Archimedes number, and density ratio. Nevertheless, some researchers insist that interparticle forces are dominant and a hydrodynamic force is not dominant. In this study, a dimensional analysis was applied to obtain a dominant parameter for distinguishing two fluidizations. Furthermore, some parameters were examined by comparing the experimental data in previous studies. The results indicated that hydrodynamic force is the dominant factor and the dimensionless gravity term is the dominant parameter in differentiating the two fluidized states. 展开更多
关键词 Bubbling Fluidization Homogeneous Fluidization Aggregative PARTICULATE Dimensional Analysis
下载PDF
On the Path from the Turbulent Vortex Dynamo Theory to Diagnosis of Tropical Cyclogenesis
5
作者 Galina Levina 《Open Journal of Fluid Dynamics》 2018年第1期86-114,共29页
An overview of researches is presented, which was focused on application of a theoretical hypothesis on the turbulent vortex dynamo to the study of tropical cyclogenesis. The dynamo effect is related to the special pr... An overview of researches is presented, which was focused on application of a theoretical hypothesis on the turbulent vortex dynamo to the study of tropical cyclogenesis. The dynamo effect is related to the special properties of small-scale helical turbulence with the broken mirror symmetry and was hypothesized to result in large-scale vortices generation in both hydrodynamic and atmospheric turbulence. To introduce this abstract theory into tropical cyclone research, a recent discovery of vortical moist convection in the tropics is emphasized. Based on this finding, we discuss and substantiate the crucial role of rotating cumulonimbus clouds, known as vortical hot towers (VHTs), as a necessary element to provide the dynamo effect. An analogy is traced between the role of interaction “moist convection—vertical wind shear” in creating the vortex dynamo in the atmosphere and the role of the mean electromotive force providing the MHD dynamo in electrically conducting medium. Throughout the review of novel results, a pivotal role of the Russian-American collaboration on examining a helical self-organization of moist convective atmospheric turbulence under tropical cyclone formation by use of cloud-resolving numerical simulation is accented. The efforts resulted in application of the vortex dynamo theory to diagnose a time when cyclogenesis commences in a favorable tropical environment. This may help elaborate a universally accepted definition of tropical cyclogenesis that currently does not exist and contribute to practical purposes of diagnosis and forecasting. 展开更多
关键词 Large-Scale Helical-Vortex Instability Tropical CYCLONE Formation Rotating CUMULUS CONVECTION Cloud-Resolving Numerical Analysis
下载PDF
Transient Electro-Osmotic and Pressure Driven Flows through a Microannulus 被引量:2
6
作者 Ren Na Yongjun Jian +2 位作者 Long Chang Jie Su Quansheng Liu 《Open Journal of Fluid Dynamics》 2013年第2期50-56,共7页
Flow behavior of transient mixed electro-osmotic and pressure driven flows (EOF/PDF) through a microannulus is investigated based on a linearized Poisson-Boltzmann equation and Navier-Stokes equation. A semi-analytica... Flow behavior of transient mixed electro-osmotic and pressure driven flows (EOF/PDF) through a microannulus is investigated based on a linearized Poisson-Boltzmann equation and Navier-Stokes equation. A semi-analytical solution of EOF velocity distribution as functions of relevant parameters is derived by Laplace transform method. By numerical computations of inverse Laplace transform, the effects of inner to outer wall zeta potential β, the normalized pressure gradient Ω and the inner to outer radius ratio α on transient EOF velocity are presented. 展开更多
关键词 Microannulus Electric Double Layer (EDL) UNSTEADY EOF/PDF Hydromechanics
下载PDF
A Twin Unidirectional Impulse Turbine for Wave Energy Conversion
7
作者 Shinya Okuhara Manabu Takao +1 位作者 Akiyasu Takami Toshiaki Setoguchi 《Open Journal of Fluid Dynamics》 2012年第4期343-347,共5页
A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different each... A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different each other. However, the effect of guide vane solidity on the turbine characteristics has not been clarified to date. The performances of a uni- directional impulse turbine under steady flow conditions were investigated experimentally by using a wind tunnel with large piston/cylinder in this study. Then, mean efficiency of the twin impulse turbine in bidirectional airflow has been estimated by a quasi-steady analysis using experimental results in order to investigate the effect of guide vane solidity on the performance. 展开更多
关键词 Fluid Machinery IMPULSE TURBINE Wave ENERGY Conversion OCEAN ENERGY
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
8
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational Fluid Dynamics Buckley-Leverett Equation Numerical Methods Two-phase Fluid Flow
下载PDF
A Direct Effective Viscosity Approach for Modeling and Simulating Bingham Fluids with the Cumulant Lattice Boltzmann Method
9
作者 Martin Geier Konstantin Kutscher Manfred Krafczyk 《Open Journal of Fluid Dynamics》 2021年第1期34-54,共21页
Modeling of fluids with complex rheology in the lattice Boltzmann method (LBM) is typically realized through the introduction of an effective viscosity. For fluids with a yield stress behavior, such as so-called Bingh... Modeling of fluids with complex rheology in the lattice Boltzmann method (LBM) is typically realized through the introduction of an effective viscosity. For fluids with a yield stress behavior, such as so-called Bingham fluids, the effective viscosity has a singularity for low shear rates and may become negative. This is typically avoided by regularization such as Papanastasiou’s method. Here we argue that the effective viscosity model can be re-interpreted as a generalized equilibrium in which no violation of the stability constraint is observed. We implement a Bingham fluid model in a three-dimensional cumulant lattice Boltzmann framework and compare the direct analytic effective viscosity/generalized equilibrium method to the iterative approach first introduced by Vikhansky which avoids the singularity in viscosity that can arise in the analytic method. We find that both methods obtain similar results at coarse resolutions. However, at higher resolutions the accuracy of the regularized method levels off while the accuracy of the direct method continuously improves. We find that the accuracy of the proposed direct method is not limited by the singularity in viscosity indicating that a regularization is not strictly necessary. 展开更多
关键词 Lattice Boltzmann Method Bingham Fluids Generalized Equilibrium
下载PDF
A Micromixer Using the Taylor-Dean Flow: Effects of Aspect Ratio and Inflow Condition on the Mixing
10
作者 Yasutaka Hayamizu Toshihiko Kawabe +4 位作者 Shinichiro Yanase Takeshi Gonda Shinichi Morita Shigeru Ohtsuka Kyoji Yamamoto 《Open Journal of Fluid Dynamics》 2015年第3期256-264,共9页
Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a p... Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition. 展开更多
关键词 Component Taylor-Dean FLOW CHAOTIC MIXING Secondary FLOW LIF CFD
下载PDF
Near Wake of a Horizontal Circular Cylinder in Stably Stratified Flows 被引量:3
11
作者 Yuji Ohya Takanori Uchida Tomoyuki Nagai 《Open Journal of Fluid Dynamics》 2013年第4期311-320,共10页
The near wake of a circular cylinder in linearly stratified flows of finite depth was experimentally investigated by means of flow visualization and measurements of vortex shedding frequencies, at Reynolds numbers 3.5... The near wake of a circular cylinder in linearly stratified flows of finite depth was experimentally investigated by means of flow visualization and measurements of vortex shedding frequencies, at Reynolds numbers 3.5 × 103-1.2 × 104 and stratification parameters kd 0-2.0. The non-dimensional parameter kd is defined as kd = Nd/U, where N is the Brunt-Vaisala frequency, d, the diameter of the cylinder, and U, the approaching flow velocity. The study demonstrates that as kd increases from zero, the vortex shedding from a circular cylinder progressively strengthens, while the Strouhal number gradually becomes lower than that for homogeneous flow. This phenomenon can be explained by the effect of the increasingly stable stratification which enhances the two-dimensionality of the near-wake flow of the circular cylinder;the enhanced two-dimensionality of the flow strengthens the roll-up of the separated shear layer. Above a certain value of kd, however, vortex formation and shedding are strongly suppressed and the Strouhal number rises sharply. This observation is attributable to the development of stationary lee waves downstream of the circular cylinder because the lee waves strongly suppress vertical fluid motions. 展开更多
关键词 STRATIFIED Flow Circular CYLINDER WAKE Pattern VORTEX SHEDDING LEE Wave
下载PDF
Experimental Study of the Diffusion of a Confined Wall Jet through a Perforated Plate: Influence of the Porosity and the Geometry 被引量:1
12
作者 Moussa Diop Denis Flick +1 位作者 Graciela Alvarez Jean Moureh 《Open Journal of Fluid Dynamics》 2022年第1期96-126,共31页
This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of  and . The plates were positi... This paper investigated lateral diffusion of a confined two-dimensional wall jet (air inlet height: 5 cm) through a perforated plate. We considered two plates with porosities of  and . The plates were positioned at distances of 10 cm and 20 cm below the jet inlet. The experiments were realized using 2D Laser Doppler Anemometer (LDA). Different profiles of mean and fluctuating velocities are presented. The presence of a perforated plate strongly modified the airflow pattern compared to an empty enclosure. The velocities above and below the plate depend on several parameters, including the porosity and the plate’s position relative to the inlet slot and the longitudinal position. The difference between the flow velocity above and below the plates could not be related using a universal formula that depends on these parameters. We also investigated the influence of a porous media of a height of 20 cm (a stack of spheres having a diameter of 3.75 cm) located below the perforated plate. The results highlight that the porous medium strengthens the effects of the perforated plate on the flow. 展开更多
关键词 Porous Medium Perforated Plate Wall Jet Air Ventilation Aeraulic Turbulence Diffusion
下载PDF
Tracking a Tip Vortex with Adaptive Vorticity Confinement and Hybrid RANS-LES
13
作者 Dag-Frederik Feder Moustafa Abdel-Maksoud 《Open Journal of Fluid Dynamics》 2016年第4期406-429,共24页
The prediction of coherent vortices with standard RANS solvers suffers especially from discretisation and modelling errors which both introduce numerical diffusion. The adaptive Vorticity Confinement (VC) method targe... The prediction of coherent vortices with standard RANS solvers suffers especially from discretisation and modelling errors which both introduce numerical diffusion. The adaptive Vorticity Confinement (VC) method targets to counteract one part of the discretisation error: the one due to the discretisation of the convection term. This method is applied in conjunction with a hybrid RANS-LES turbulence model to overcome the overprediction of turbulence intensity inside vortex cores which is a typical deficiency of common RANS solvers. The third main source for numerical diffusion originates from the spatial discretisation of the solution domain in the vicinity of the vortex core. The corresponding error is analysed within a grid convergence study. A modification of the adaptive VC method used in conjunction with a high-order discretisation of the convection term is presented and proves to be superior. The simulations of a wing tip vortex flow are validated in terms of vortex velocity profiles using the results of a wind tunnel experiment performed by Devenport and colleagues (1996). Besides, the results are compared with another numerical study by Wells (2009) who uses a Reynolds Stress turbulence model. It turns out that the application of the modified adaptive VC method on the one hand reinforces the tip vortex, and on the other hand accelerates the axial flow which leads to a slight degradation compared to the experimental results. The result of Wells is more accurate close to the wing, but the result obtained here is superior further downstream as no excessive diffusion of the tip vortex occurs. 展开更多
关键词 Tip Vortex Adaptive Vorticity Confinement Hybrid RANS-LES Devenport Numerical Diffusion
下载PDF
Diffusion Process of High Concentration Spikes in a Quasi-Homogeneous Turbulent Flow
14
作者 Masaya Endo Qianqian Shao +1 位作者 Takahiro Tsukahara Yasuo Kawaguchi 《Open Journal of Fluid Dynamics》 2016年第4期371-390,共21页
When a mass spreads in a turbulent flow, areas with obviously high concentration of the mass compared with surrounding areas are formed by organized structures of turbulence. In this study, we extract the high concent... When a mass spreads in a turbulent flow, areas with obviously high concentration of the mass compared with surrounding areas are formed by organized structures of turbulence. In this study, we extract the high concentration areas and investigate their diffusion process. For this purpose, a combination of Planar Laser Induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV) techniques was employed to obtain simultaneously the two fields of the concentration of injected dye and of the velocity in a water turbulent channel flow. With focusing on a quasi-homogeneous turbulence in the channel central region, a series of PLIF and PIV images were acquired at several different downstream positions. We applied a conditional sampling technique to the PLIF images to extract the high concentration areas, or spikes, and calculated the conditional-averaged statistics of the extracted areas such as length scale, mean concentration, and turbulent diffusion coefficient. We found that the averaged length scale was constant with downstream distance from the diffusion source and was smaller than integral scale of the turbulent eddies. The spanwise distribution of the mean concentration was basically Gaussian, and the spanwise width of the spikes increased linearly with downstream distance from the diffusion source. Moreover, the turbulent diffusion coefficient was found to increase in proportion to the spanwise distance from the source. These results reveal aspects different from those of regular mass diffusion and let us conclude that the diffusion process of the spikes differs from that of regular mass diffusion. 展开更多
关键词 Turbulent Transport High Concentration Spikes Quasi-Homogeneous Turbulent Flow Conditional Sampling Technique PIV and PLIF Measurements Passive Scalar Diffusion
下载PDF
Structural Damage Localization by Linear Technique of Acoustic Emission
15
作者 Md. Tawhidul Islam Khan Nagafuchi Sunichi Mehedi Hasan 《Open Journal of Fluid Dynamics》 2014年第5期425-432,共8页
Linear source location of acoustic emission (AE) technique has been applied in the present paper for finding the source of material damage under fatigue loading. A plate type structure of ductile cast iron has been us... Linear source location of acoustic emission (AE) technique has been applied in the present paper for finding the source of material damage under fatigue loading. A plate type structure of ductile cast iron has been used to undergo fatigue damage in a servopulsing machine in the experiment. AE sensors were attached to the specimen for getting the time delay of AE signal propagations through the specimen. After receiving the time delay data of AE signals due to the damage initiation in the material for the provided fatigue loads, linear source location algorithm has been applied and the crack positions are identified. Before applying the technique, a series of pencil lead breaks (PLBs) tests have been conducted upon a ductile cast iron plate of same dimension for verifying the applied algorithm. According to the PLBs varification, the failure location of ductile cast iron (pearlite type) due to the fatigue loading has been characterized. In both experiments, the active ability of the proposed technique for source location of structural damage has been identified clearly and successfully. 展开更多
关键词 Structural DAMAGE Linear SOURCE LOCATION Technique ACOUSTIC EMISSION
下载PDF
Direct Numerical Simulation of a Jet Issuing from Rectangular Nozzle by the Vortex in Cell Method
16
作者 Tomomi Uchiyama Masahiro Kobayashi +1 位作者 Shouichiro Iio Toshihiko Ikeda 《Open Journal of Fluid Dynamics》 2013年第4期321-330,共10页
Direct numerical simulation of a jet issuing from a nozzle having a rectangular cross-section is conducted. The vortex in cell (VIC) method, of which computational accuracy was heightened by the authors in a prior stu... Direct numerical simulation of a jet issuing from a nozzle having a rectangular cross-section is conducted. The vortex in cell (VIC) method, of which computational accuracy was heightened by the authors in a prior study, is used for the DNS. The aspect ratio of the nozzle cross-section is 15, and the Reynolds number based on the shorter side length of the nozzle exit is 6700. The turbulence statics, such as the mean velocity and the turbulence intensity, are favorably compared with the experimentally measured results. The behavior of the large-scale eddies as well as the development of the turbulent flow is also confirmed to agree with the measurement. These indicate that the authors’ VIC method is successfully employed for the DNS of rectangular jet. 展开更多
关键词 RECTANGULAR JET VORTEX in CELL Method DNS Vortical Structure
下载PDF
Chemical Reaction and Thermal Diffusion Effects on Mass Transfer Flow through an Inclined Plate
17
作者 Farjana Akter Md. Manjiul Islam +2 位作者 Ariful Islam Md. Shakhaoath Khan Md. Saddam Hossain 《Open Journal of Fluid Dynamics》 2016年第1期62-74,共13页
A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equati... A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate. 展开更多
关键词 Chemical Reaction Mass Transfer Inclined Plate Soret Effects Dufour Effects
下载PDF
Effect of Magnetic Field on the Flow and Heat Transfer in a Casson Thin Film on an Unsteady Stretching Surface in the Presence of Viscous and Internal Heating
18
作者 Nalleboyina Vijaya Kata Sreelakshmi Ganganapalli Sarojamma 《Open Journal of Fluid Dynamics》 2016年第4期303-320,共18页
The aim of this investigation is to analyze the effectiveness of Lorentz force, viscous dissipation and internal heating on the heat and flow characteristics of a non-Newtonian Casson fluid thin film resting on a stre... The aim of this investigation is to analyze the effectiveness of Lorentz force, viscous dissipation and internal heating on the heat and flow characteristics of a non-Newtonian Casson fluid thin film resting on a stretching surface under the influence of a magnetic field. Employing suitable similarity variables and shooting technique and integrating scheme numerical solutions for velocity and temperature are obtained. The results of this analysis are compared with the published work and are found to be in good agreement. The thickness of the thin film is evaluated and is observed that Lorentz force and the non-Newtonian nature of the fluid have a thinning influence on the film. Velocity and temperature distributions in the thin film are discussed for various flow parameters. 展开更多
关键词 Unsteady Stretching Sheet Casson Thin Film Viscous Dissipation Internal Heating
下载PDF
Effect of Cooling Intensity and Position on Solidification in Semi-Continuous Casting of Copper
19
作者 Amar H. Hameed Ahmed A. Mohammed Obaid T. Fadhil 《Open Journal of Fluid Dynamics》 2016年第3期182-197,共16页
Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity,... Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity, however low rate of solidification is aimed in order to get coarser grain size and softer metal for less losses in extrusion. A three-dimensional numerical model has been developed including solidification behavior of copper through mushy zone. At steady state and constant casting speed, solid shell thickness is monitored during the reduction of cooling rate at mould region to avoid breaking out. Heat flux intensity at mould plays important role not only in the formation of solid shell thickness. But, pool length and mushy zone thickness can be significantly increased by decreasing primary cooling intensity. Increase intensity of secondary cooling zone for two particular cases of primary cooling is tested. First case is tested at mould inlet water temperature of 38°C, and second case at water temperature of 63°C. Results showed that the combination of increasing secondary cooling intensity and reduction of primary cooling intensity can increase pool length and mushy zone thickness. Also, it is shown that, secondary cooling intensity can be magnified by up to 1.5 times for cooling water temperature of 63°C to get pool length close to that of water temperature of 38°C. 展开更多
关键词 COPPER SEMI-CONTINUOUS CASTING Primary Cooling Secondary Cooling Metal Casting
下载PDF
Effect of Arrangement of Tube Banks on Acoustic Resonance
20
作者 Hiromitsu Hamakawa Tatsuaki Nakamura +2 位作者 Kenta Asakura Eiichi Nishida Eru Kurihara 《Open Journal of Fluid Dynamics》 2012年第4期311-317,共7页
In the present paper the attention is focused on effect of arrangement of tube banks on acoustic resonance which occurred in the two-dimensional model of boiler. We have examined the characteristics of vortex shedding... In the present paper the attention is focused on effect of arrangement of tube banks on acoustic resonance which occurred in the two-dimensional model of boiler. We have examined the characteristics of vortex shedding and acoustic resonance generated from in-line and staggered tube banks. At the small tube pitch ratio in in-line tube banks, acoustic resonance of third and fourth mode in the transverse direction occurred. As the tube pitch ratio in the flow direction decreased, the vortex shedding frequency became broad-band. The alternative vortex shed from in-line tube banks. The multiple resonance modes were generated within the broad-band vortex shedding frequency. And the acoustic resonances of lower-order modes occurred at the higher gap velocity. On the other hand, at the small tube pitch ratio in staggered tube banks, acoustic resonance did not occurred, although the vortex shed at the resonance frequency in tube banks. The pressure drop at staggered tube banks was larger than that of in-line tube banks. The symmetric vortices were observed inside staggered tube banks at the small tube pitch ratio. 展开更多
关键词 Acoustic RESONANCE VORTEX TUBE BANKS IN-LINE Arrangement Staggered Arrangement BOILER
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部